$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{j = 1}^{n}{1 \over n + j} & =
\sum_{j = 1 + n}^{2n}{1 \over j} =
\sum_{j = 1}^{2n}{1 \over j} - \sum_{j = 1}^{n}{1 \over j} =
\bracks{\sum_{j = 1}^{n}{1 \over 2j} + \sum_{j = 1}^{n}{1 \over 2j - 1}} - 2\sum_{j = 1}^{n}{1 \over 2j}
\\[5mm] & =
\sum_{j = 1}^{n}{1 \over 2j - 1} - \sum_{j = 1}^{n}{1 \over 2j} =
\bbx{\ds{\sum_{j = 1}^{2n}{\pars{-1}^{n + 1} \over j}}}
\end{align}