Soy nuevo en el tema de la matemática discreta.
Esta declaración es verdadera o falsa y no tiene que ser probado. He luchado con este ejercicio durante bastante tiempo, y esto es lo que se me ocurrió:
- Si $8|n^2$ $n^2$ es incluso
- Si $n^2$ es incluso, a continuación, $n$ es incluso
- Si $n$ es positiva y $4|n$ $n = 4k$ ($k$ - cualquier entero positivo)
- Si $n = 4k$ $n^2 = 16k^2$
- $8|16k^2$ $4|4k$ , por lo tanto la afirmación es verdadera
$n|m$ $n$ divide $m$
Alguien puede comprobar si me lo demostró o no?