Es casi seguro que hay una forma mejor de hacer el problema que ésta, pero éste es un método sencillo.
Podemos enumerar todas las soluciones enteras no negativas de $w + x + y + z = 10$ , suponiendo que $w,x,y,z$ no son decrecientes. Enumeramos el número de permutaciones para cada solución, y la probabilidad de que $w \leq 2$ .
Ordenar de mayor a menor número de ceros:
\begin{align*} 10&=0 + 0 + 0 + 10 \,\,\,\,\,\,\,\,\, \text{ (with } 4 \text{ permutations) } &\, \text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,3 \text{ out of } 4\\ 10&=0 + 0 + 1 + 9 \,\,\,\,\,\,\,\,\, \text{ (with } 4 \cdot 3\text{ permutations) }&\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,3 \text{ out of } 4\\ 10&= 0 + 0 + 2 + 8\,\,\,\,\,\,\,\,\, \text{ (with } 4 \cdot 3 \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,3 \text{ out of } 4\\ 10&= 0 + 0 + 3 + 7 \,\,\,\,\,\,\,\,\, \text{ (with } 4 \cdot 3\text{ permutations) }&\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,2 \text{ out of } 4\\ 10&= 0 + 0 + 4 + 6\,\,\,\,\,\,\,\,\, \text{ (with } 4 \cdot 3\text{ permutations) }&\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,2 \text{ out of } 4\\ 10&= 0 + 0 + 5 + 5 \,\,\,\,\,\,\,\,\, \text{ (with } \binom{4}{2}\text{ permutations) }&\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,2 \text{ out of } 4\\ 10&= 0 + 1 + 1 +8\,\,\,\,\,\,\,\,\, \text{ (with }4 \cdot 3 \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,3 \text{ out of } 4\\ 10&= 0 + 1 + 2 +7\,\,\,\,\,\,\,\,\, \text{ (with }4! \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,3 \text{ out of } 4\\ 10&= 0 + 1 + 3+6\,\,\,\,\,\,\,\,\, \text{ (with }4! \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,2 \text{ out of } 4\\ 10&= 0 + 1 + 4 +5\,\,\,\,\,\,\,\,\, \text{ (with }4! \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,2 \text{ out of } 4\\ 10&= 0 + 2 + 2 +6\,\,\,\,\,\,\,\,\, \text{ (with }4 \cdot 3 \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,3 \text{ out of } 4\\ 10&= 0 + 2 + 3 +5\,\,\,\,\,\,\,\,\, \text{ (with }4! \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,2 \text{ out of } 4\\ 10&= 0 + 2 + 4 +4\,\,\,\,\,\,\,\,\, \text{ (with }4 \cdot 3 \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,2 \text{ out of } 4\\ 10&= 0 + 3 + 3 +4\,\,\,\,\,\,\,\,\, \text{ (with }4 \cdot 3 \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,1 \text{ out of } 4\\ 10&= 1 + 1 + 1 +7\,\,\,\,\,\,\,\,\, \text{ (with }4 \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,3 \text{ out of } 4\\ 10&= 1 + 1 + 2 +6\,\,\,\,\,\,\,\,\, \text{ (with }4 \cdot 3 \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,3 \text{ out of } 4\\ 10&= 1 + 1 + 3 +5\,\,\,\,\,\,\,\,\, \text{ (with }4 \cdot 3 \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,2 \text{ out of } 4\\ 10&= 1 + 1 + 4 +4\,\,\,\,\,\,\,\,\, \text{ (with }\binom{4}{2} \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,2 \text{ out of } 4\\ 10&= 1 + 2 + 2 +5\,\,\,\,\,\,\,\,\, \text{ (with }4 \cdot 3 \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,3 \text{ out of } 4\\ 10&= 1 + 2 + 3 +4\,\,\,\,\,\,\,\,\, \text{ (with }4! \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,2 \text{ out of } 4\\ 10&= 1 + 3 + 3 +3\,\,\,\,\,\,\,\,\, \text{ (with }4 \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,1 \text{ out of } 4\\ 10&= 2 + 2 + 2 +4\,\,\,\,\,\,\,\,\, \text{ (with }4 \text{ permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,3 \text{ out of } 4\\ 10&= 2 + 2 + 3 + 3\,\,\,\,\,\,\,\,\, \text{ (with }\binom{4}{2} \text { permutations) } &\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ prob } w \leq 2 \text { is } \text{:}\,\,\,\,\,\,\,2 \text{ out of } 4\\ \end{align*}
El número total de permutaciones es:
$$(4\cdot 3)\cdot 11+(4)\cdot 4+(4\cdot 3/2)\cdot 3+(4\cdot 3\cdot 2)\cdot 5 = 286$$
Multiplica el número de permutaciones por la probabilidad de que $w \leq 2$ para cada caso. Sume estas cifras. Dividir por el número total de permutaciones. Obtenemos $$\frac{166}{286} = \boxed{\frac{83}{143}}$$
0 votos
La idea me parece bien, pero veo algunos errores. Por ejemplo $1+x+y+z=10$ significa que $x+y+z=9$ . Hay $\binom{11}2$ soluciones. También $|S|=\binom{13}3$ (no $\binom{13}4$ ). Hay $\binom{n+k-1}{k-1}$ soluciones enteras no negativas para $x_1+\cdots+x_k=n$ . No $\binom{n+k-1}{k}$
0 votos
Prefiero que el orden importe en el espacio de la muestra ya que importará algo en el espacio del evento.