Usted está cerca. Por mi cálculo (comprobado en un $2\,x\,2$ ejemplo)
$$\frac{\partial }{{\partial \underline {\overline {\bf{A}} } }}\left( {{{\underline {\overline {\bf{A}} } }^T}\underline {\overline {\bf{A}} } } \right) = \left( {{{\underline {\overline {\bf{I}} } }_{\left[ n \right]}} \otimes {{\underline {\overline {\bf{A}} } }^T}} \right) + \left( {{{\underline {\overline {\bf{A}} } }^T} \otimes {{\underline {\overline {\bf{I}} } }_{\left[ n \right]}}} \right){\underline {\overline {\bf{K}} } _{\left[ {m,n} \right]}}$$
Derivación:
$$\frac{\partial }{{\partial \underline {\overline {\bf{A}} } }}\left( {{{\underline {\overline {\bf{A}} } }^T}\underline {\overline {\bf{A}} } } \right) = {\left. {\frac{\partial }{{\partial \underline {\overline {\bf{A}} } }}\left( {{{\underline {\overline {\bf{A}} } }^T}\underline {\overline {\bf{A}} } } \right)} \right|_{{{\underline {\overline {\bf{A}} } }^T}{\rm{ constant}}}} + {\left. {\frac{\partial }{{\partial \underline {\overline {\bf{A}} } }}\left( {{{\underline {\overline {\bf{A}} } }^T}\underline {\overline {\bf{A}} } } \right)} \right|_{\underline {\overline {\bf{A}} } {\rm{ constant}}}}$$
Para el primer término
$${\underline {\overline {\bf{A}} } ^T}\underline {\overline {\bf{A}} } = {\underline {\overline {\bf{A}} } ^T}\underline {\overline {\bf{A}} } \,{\underline {\overline {\bf{I}} } _{\left[ n \right]}} = \left( {{{\underline {\overline {\bf{I}} } }_{\left[ n \right]}} \otimes {{\underline {\overline {\bf{A}} } }^T}} \right){\rm{vec}}\left( {\underline {\overline {\bf{A}} } } \right)$$
así que
$${\left. {\frac{\partial }{{\partial \underline {\overline {\bf{A}} } }}\left( {{{\underline {\overline {\bf{A}} } }^T}\underline {\overline {\bf{A}} } } \right)} \right|_{{{\underline {\overline {\bf{A}} } }^T}{\rm{ constant}}}} = \left( {{{\underline {\overline {\bf{I}} } }_{\left[ n \right]}} \otimes {{\underline {\overline {\bf{A}} } }^T}} \right)$$
Para el segundo término
$${\underline {\overline {\bf{A}} } ^T}\underline {\overline {\bf{A}} } = {\underline {\overline {\bf{I}} } _{\left[ n \right]}}{\underline {\overline {\bf{A}} } ^T}\underline {\overline {\bf{A}} } = \left( {{{\underline {\overline {\bf{A}} } }^T} \otimes {{\underline {\overline {\bf{I}} } }_{\left[ n \right]}}} \right){\rm{vec}}\left( {{{\underline {\overline {\bf{A}} } }^T}} \right) = \left( {{{\underline {\overline {\bf{A}} } }^T} \otimes {{\underline {\overline {\bf{I}} } }_{\left[ n \right]}}} \right){\underline {\overline {\bf{K}} } _{\left[ {m,n} \right]}}{\rm{vec}}\left( {\underline {\overline {\bf{A}} } } \right)$$
así que
$${\left. {\frac{\partial }{{\partial \underline {\overline {\bf{A}} } }}\left( {{{\underline {\overline {\bf{A}} } }^T}\underline {\overline {\bf{A}} } } \right)} \right|_{\underline {\overline {\bf{A}} } {\rm{ constant}}}} = \left( {{{\underline {\overline {\bf{A}} } }^T} \otimes {{\underline {\overline {\bf{I}} } }_{\left[ n \right]}}} \right){\underline {\overline {\bf{K}} } _{\left[ {m,n} \right]}}$$
Me pareció un reto para unir todos los diferentes resultados necesarios para hacer este tipo de cálculo con soltura (la que yo necesitaba para calcular el determinante Jacobiano de la enfermedad vesicular porcina transformaciones). Uno muy útil la referencia que se ocupa con la eliminación y la conmutación de las matrices es:
Magnus, J., y Neudecker, H., "La Eliminación de la Matriz: Algunos de los Lemas y de las Aplicaciones," SIAM J. en Algebraicas. y Discretos Metanfetamina., V. 1, número 4, pp 422-449, Dic. 1980.
Sin embargo, esto no cubre nada que ver con el cálculo lado de las cosas. Me terminó de compilar mi propia lista de resultados útiles, que (para el caso real) pueden ser encontrados aquí en la Sección 3. El hecho de que es Rev 8 da una idea de lo fácil que es para desordenar las cosas.