$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\sum_{n = 1}^{\infty}{k\elegir n}{b - 1 \elegir n - 1}x^{n}\ \sim\
{x^{b}k^{b} \over \Gamma\pars{1 + b}} \quad \mbox{como}\ k \to \infty:\ ?}$.
\begin{align}
\mbox{As}\ k \to \infty\,,\quad{k! \over \pars{k - n}!} & \sim
{\root{2\pi}k^{k + 1/2}\expo{-k} \over
\root{2\pi}\pars{k - n}^{k - n + 1/2}\expo{-k + n}} =
{k^{n}\expo{-n} \over \pars{1 - n/k}^{k}\pars{1 - n/k}^{-n + 1/2}} \sim k^{n}
\end{align}
\begin{align}
\sum_{n = 1}^{\infty}{k\choose n}{b - 1 \choose n - 1}x^{n} & \sim
\sum_{n = 0}^{\infty}{k^{n} \over n!}{b - 1 \choose b - n}x^{n} =
\sum_{n = 0}^{\infty}{k^{n} \over n!}\,x^{n}
\oint_{\verts{z}\ =\ 1^{-}}{\pars{1 + z}^{b - 1} \over z^{b - n + 1}}
\,{\dd z \over 2\pi\ic}
\\[5mm] & =
\oint_{\verts{z}\ =\ 1^{-}}{\pars{1 + z}^{b - 1} \over z^{b + 1}}
\sum_{n = 0}^{\infty}{\pars{kxz}^{n} \over n!}
\,{\dd z \over 2\pi\ic} =
\oint_{\verts{z}\ =\ 1^{-}}{\pars{1 + z}^{b - 1}\expo{kxz} \over z^{b + 1}}
\,{\dd z \over 2\pi\ic}
\end{align}
Con el fin de evaluar la última integral, podemos elegir el $\ds{z^{-b - 1}}$ rama de corte a lo largo de $\ds{\left(\,-\infty,0\,\right]}$ con
$\ds{-\pi < \mrm{arg}\pars{z} < \pi}$. El contorno es una sangría 'de todo'
$\ds{ z = 0}$ , con una semi-circunferencia de radio
$\ds{\epsilon\ \mid\ 0 < \epsilon < 1}$. Como de costumbre, el límite
$\ds{\epsilon \to 0^{+}}$ se toma en el final.
\begin{align}
\left.\sum_{n = 1}^{\infty}{k\choose n}{b - 1 \choose n - 1}x^{n}\,
\right\vert_{\ 0\ <\ \epsilon\ <\ 1} & \sim
-\int_{-1}^{-\epsilon}{\pars{1 + \xi}^{b - 1}\expo{kx\xi} \over
\pars{-\xi}^{b + 1}\expo{\ic\pars{b + 1}\pi}}\,{\dd\xi \over 2\pi\ic} -
\int_{\pi}^{-\pi}{1 \over \epsilon^{b + 1}\expo{\ic\pars{b + 1}\theta}}
\,{\epsilon\expo{\ic\theta}\ic\,\dd\theta \over 2\pi\ic}
\\[5mm] & -
\int_{-\epsilon}^{-1}{\pars{1 + \xi}^{b - 1}\expo{kx\xi} \over
\pars{-\xi}^{b + 1}\expo{-\ic\pars{b + 1}\pi}}\,{\dd\xi \over 2\pi\ic}
\\[1cm] & =
\expo{-\ic b\pi}\int_{\epsilon}^{1}{\pars{1 - \xi}^{b - 1}\expo{-kx\xi} \over
\xi^{b + 1}}\,{\dd\xi \over 2\pi\ic} +
{\sin\pars{\pi b} \over \pi b}\,\epsilon^{-b}
\\[5mm] & -
\expo{\ic b\pi}\int_{\epsilon}^{1}{\pars{1 - \xi}^{b - 1}\expo{-kx\xi} \over
\xi^{b + 1}}\,{\dd\xi \over 2\pi\ic}
\\[1cm] & =
-\,{\sin\pars{b \pi} \over \pi}
\int_{\epsilon}^{1}\pars{1 - \xi}^{b - 1}\expo{-kx\xi}\xi^{-b - 1}\,\dd\xi +
{\sin\pars{\pi b} \over \pi b}\,\epsilon^{-b}
\end{align}
Como $\ds{k \to \infty}$, la principal contribución a la integral viene de
los valores de $\ds{\xi\ \mid \xi \gtrsim 0}$. A continuación,
\begin{align}
\left.\sum_{n = 1}^{\infty}{k\choose n}{b - 1 \choose n - 1}x^{n}\,
\right\vert_{\ 0\ <\ \epsilon\ <\ 1} & \sim
{\sin\pars{b \pi} \over \pi b}
\int_{\xi\ =\ \epsilon}^{\xi\ \to\ \infty}
\expo{-kx\xi}\,\dd\pars{\xi^{-b}} +
{\sin\pars{\pi b} \over \pi b}\,\epsilon^{-b}
\end{align}
La integración por partes y teniendo la $\ds{\pars{~\epsilon \to 0^{+}~}}$-límite
\begin{align}
\sum_{n = 1}^{\infty}{k\choose n}{b - 1 \choose n - 1}x^{n}\,
& \sim
{\sin\pars{\pi b} \over \pi b}\,kx\int_{0}^{\infty}\xi^{-b}\expo{-kx\xi}\,\dd\xi
=
{\sin\pars{\pi b} \over \pi b}\,\pars{kx}^{b}\,\Gamma\pars{1 - b}
\\[5mm] & =
{\sin\pars{\pi b} \over \pi b}\,\pars{kx}^{b}\,
{\pi \over \Gamma\pars{b}\sin\pars{\pi b}} =
\bbox[15px,#ffe,border:1px dotted navy]{\ds{%
k^{b}x^{b} \over \Gamma\pars{1 + b}}}
\end{align}