Puede escribir $$ \begin{align}
\int_{0}^{\infty}\frac{\log x}{1+x^{2}}dx&=\int_{0}^{1}\frac{\log x}{1+x^{2}}dx+\int_{1}^{\infty}\frac{\log x}{1+x^{2}}dx\\\\
&=\int_{0}^{1}\frac{\log x}{1+x^{2}}dx-\int_{1}^{\infty}\frac{\log (1/x)}{1+\frac1{x^2}}\frac{dx}{x^2}\\\\
&=\int_{0}^{1}\frac{\log x}{1+x^{2}}dx-\int_{1}^{\infty}\frac{\log (1/x)}{1+\frac1{x^2}}\frac{dx}{x^2}\\\\
&=\int_{0}^{1}\frac{\log x}{1+x^{2}}dx-\int_{0}^{1}\frac{\log u}{1+u^{2}}du\quad (u=1/x)\\\\
&=0.
\end {align} $$
Configurando$\displaystyle u=\frac1x$, que es$\displaystyle x=\frac1u$ obtenemos$\displaystyle dx=-\frac{du}{u^2}$,$\displaystyle \log x=-\log u$,$1 \mapsto 1,\,\infty \mapsto 0$, luego $$ \ color {blue} {\ int_ {1} ^ { \ infty} \ frac {\ log x} {1 + x ^ {2}} dx = \ int_ {1} ^ {0} \ frac {- \ log u} {1+ \ frac1 {u ^ {2}} } \ left (- \ frac {du} {u ^ 2} \ right) = \ int_ {1} ^ {0} \ frac {\ log u} {1 + u ^ {2}} du = - \ int_ { 0} ^ {1} \ frac {\ log u} {1 + u ^ {2}} du.} $$