Solo tenemos que calcular:$$ \mathcal{J}(m)=\sum_{n\geq 1}\frac{H_n}{n^{2m}} \tag{1} $ $, pero el teorema de Euler (ver Flajolet y Salvy ,$(2.2)$) da:$$ \mathcal{J}(m)= (1+m)\,\zeta(2m+1)-\frac{1}{2}\sum_{k=1}^{2m-2}\,\zeta(k+1)\zeta(2m-k)\tag{2}$ $ como consecuencia de:$$ \text{Res}\left[\left(\psi(-s)+\gamma\right)^2,s=n\right]=2 H_n,\tag{3}$ $, por lo tanto:% # ps
donde:$$ S=\sum_{n\geq 1}\frac{H_n}{n}\,\arctan\frac{1}{n}=\sum_{m\geq 1}\frac{(-1)^{m+1}}{2m-1}\sum_{n\geq 1}\frac{H_n}{n^{2m}}=\\=\sum_{m\geq 1}\frac{(-1)^{m+1}}{2m-1}\left((1+m)\,\zeta(2m+1)-\frac{1}{2}\sum_{k=1}^{2m-2}\,\zeta(k+1)\zeta(2m-k)\right)=\\=\sum_{m\geq 1}\frac{(-1)^{m+1}}{2m-1}\cdot[x^{2m}]\,g(x)\tag{4}$ $
Entonces tenemos:$$\begin{eqnarray*} g(x) &=& -\gamma-\frac{\gamma x}{2}- \psi(1-x)-\gamma x \psi(1-x)-\frac{x}{2} \psi(1-x)^2+\frac{x}{2} \psi'(1-x)\\&=&\frac{\pi^2}{4}\,x+2\zeta(3)\,x^2+\frac{5}{4}\zeta(4)\,x^3+(3\zeta(5)-\zeta(2)\zeta(3))\,x^4+\ldots\tag{5}\end{eqnarray*} $ $