<blockquote>
<p><strong>Pregunta:</strong> Lo que salió mal en mi trabajo a $$\ln(1-x)=-\cfrac x{1-\cfrac x{2+x-\cfrac {2x}{3+2x-\cfrac {3x}{4+3x-\ddots}}}}\tag{1}$ $</p>
</blockquote>
<p>Empecé con la expansión $$\begin{align*}\ln(1-x) & =-x-\dfrac {x^2}2-\dfrac {x^3}3-\dfrac {x^4}4-\&\text{c}.\\ & =-x\left\{1+\left(\dfrac x2\right)+\left(\dfrac x2\right)\left(\dfrac x{3/2}\right)+\&\text{c}.\right\}\tag{2}\end{align*}$ $ y por fracción continua de Euler, $(2)$ puede ser reescrito en $$\begin{align*} & -x\left\{1+\left(\dfrac x2\right)+\left(\dfrac x2\right)\left(\dfrac x{3/2}\right)+\left(\dfrac x{2}\right)\left(\dfrac x{3/2}\right)\left(\dfrac x{4/3}\right)+\&\text c.\right\}\\ & =-\cfrac {x}{1-\cfrac x{2+x-\cfrac {2x}{3+2x-\ddots}}}\end{align*}\tag{3}$ $ sin embargo, si ponemos $x=2$, entonces tenemos el lado izquierdo como $\ln(1-2)=\ln -1=\pi i$. El lado derecho se convierte en $$-\cfrac 2{1-\cfrac 2{4-\cfrac 4{7-\cfrac 6{10-\ddots}}}}=\pi i\tag{4}$ $ pero la LHS es real mientras que la RHS es imaginario. ¿Qué salió mal?</p>