Sí, al menos si el límite es compacto.
Definir un mapa $$\varphi:\partial M\times[0,\epsilon)\to M,\quad (p,t)\mapsto\exp_p(t\nu),$$where $\nu$ is the inward pointing unit normal vector field along the boundary. The differential of $\varphi$ at $(p,0)$ is nonsingular for any $p\en\partial M$. Using the inverse function theorem and a compactness argument, we deduce that for some $\epsilon'\leq\epsilon$, the map $\varphi|_{\partial M\times[0,\epsilon')}$ is a diffeomorphism. This means, in particular, that $$d(\varphi(p,t))=t,\quad(p,t)\in\partial M\times[0,\epsilon'),$$y el reclamo está probado.
Edit: Aquí es opcional compacidad argumento. Por el teorema de la función inversa, sabemos que para $p\in\partial M$, hay un barrio de $(p,0)$ $\partial M\times[0,\epsilon)$ que $\varphi$ es un diffeomorphism. Ahora supongamos que, por cualquier $\epsilon'>0$ la restricción $\varphi|_{\partial M\times[0,\epsilon')}$ no es inyectiva. Entonces, existen dos secuencias, $(p_n,t_n)$$(q_n,s_n)$, de los puntos en $\partial M\times[0,\epsilon),$ tal que para cada a $n$ hemos $$(p_n,t_n)\neq(q_n,s_n),\quad t_n,s_n<\frac{1}{n},\quad\varphi(p_n,t_n)=\varphi(q_n,s_n).$$By moving to a subsequence of $(p_n)$, and then to a subsequence of $(q_n)$, we may assume that both sequences converge, say, to the points $p$ and $q$, respectively. By continuity, we get $$p=\varphi(p,0)=\lim_{n\to\infty}\varphi(p_n,t_n)=\lim_{n\to\infty}\varphi(q_n,s_n)=\varphi(q,0)=q.$$ But this would mean that $\varphi$ is not injective in any neighborhood of the point $(p,0)=(q,0)$, una contradicción.