$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{1}{\dd x \over \root{x\pars{1 - x}}}:\ {\large ?}}$
\begin{align}
&\color{#00f}{\large\int_{0}^{1}{\dd x \over \root{x\pars{1 - x}}}}
=\overbrace{\int_{0}^{1/2}{\dd x \over \root{x\pars{1 - x}}}}
^{\ds{x = t^{2}}}\
+\ \overbrace{\int_{1/2}^{1}{\dd x \over \root{x\pars{1 - x}}}}^{\ds{x = 1 - t^{2}}}
\\[3mm]&=\int_{0}^{\root{2}/2}{2\,\dd t \over \root{1 - t^{2}}}
+\int_{\root{2}/2}^{0}{-2\,\dd t \over \root{1 - t^{2}}}
=4\
\overbrace{\int_{0}^{\root{2}/2}{\dd t \over \root{1 - t^{2}}}}^{\ds{t = \sin\pars{\theta}}}
=4\int_{0}^{\pi/4}\dd\theta
=\color{#00f}{\LARGE\pi}
\end{align}