¿Alguien puede explicar a mí, por qué la siguiente desigualdad es verdadera?
$$\sum_{k=0}^{\infty} \int_{k \pi + \frac{\pi}{4}}^{(k+1)\pi-\frac{\pi}{4}} \left| \frac{\sin \xi}{\xi} \right| \, \text{d} \xi \geq \sum_{k=0}^{\infty} \frac{\left| \sin\left( (k+1) \pi - \frac{\pi}{4} \right)\right|}{(k+1) \pi - \frac{\pi}{4}} \ \frac{\pi}{2} $$
La pregunta es motivado por el siguiente cálculo $$ \sum_{k=0}^{\infty} \int_{k \pi}^{(k+1) \pi} \left| \frac{\sin \xi}{\xi} \right| \, \text{d} \xi \geq \sum_{k=0}^{\infty} \int_{k \pi + \frac{\pi}{4}}^{(k+1)\pi\frac{\pi}{4}} \left| \frac{\sin \xi}{\xi} \right| \, \text{d} \xi \geq \\ \geq \sum_{k=0}^{\infty} \frac{\left| \sin\left( (k+1) \pi \frac{\pi}{4} \right)\right|}{(k+1) \pi \frac{\pi}{4}} \ \frac{\pi}{2} = \sum_{k=0}^{\infty} \frac{\left| \sin\left( (k+1) \pi \frac{\pi}{4} \right)\right|}{2(k+1) - \frac{1}{2}} = \\ = \sum_{k=0}^{\infty} \frac{\sqrt{2}}{2} \frac{1}{2(k+1) - \frac{1}{2}} = \sum_{k=0}^{\infty} \frac{\sqrt{2}}{4k+3} \geq \sum_{k=0}^{\infty} \frac{\sqrt{2}}{4k} = \\ = \frac{\sqrt{2}}{4}\sum_{k=0}^{\infty} \frac{1}{k} = \infty $$ lo que muestra que $\frac{\sin \xi}{\xi} \notin \mathcal{L}^1(\mathbb{R})$.