5 votos

En el radical de un cierto ideal de dieciséis anillo polinómico variable, generado por las entradas de ciertas matrices

Considere el polinomio anillo de $R=\mathbb C[x_1,x_2,...,x_{16}]$, y el conjunto de

$$X=\begin{pmatrix} x_1 &x_2&x_3 &x_4\\ x_5&x_6& x_7&x_8\\x_9&x_{10}&x_{11}&x_{12}\\x_{13}&x_{14}&x_{15}&x_{16}\end{pmatrix}.$$

Ahora, el uso de estas tres matrices

$$L=\begin{pmatrix}0&-1&0&0\\1&0&0&0\\0&0&0&-1\\0&0&1&0 \end{pmatrix}$$ $$M=\begin{pmatrix}0&0&0&-1\\0&0&-1&0\\0&1&0&0\\1&0&0&0\end{pmatrix}$$ $$N=\begin{pmatrix}0&0&-1&0\\0&0&0&1\\1&0&0&0\\0&-1&0&0\end{pmatrix}$$

creamos polinomios $f_i, g_i,$$h_i$, de la siguiente manera:

$$XLX^t-L=\begin{pmatrix} f_1 &f_2&f_3 &f_4\\ f_5&f_6& f_7&f_8\\f_9&f_{10}&f_{11}&f_{12}\\f_{13}&f_{14}&f_{15}&f_{16}\end{pmatrix}$$

$$XMX^t-M=\begin{pmatrix} g_1 &g_2&g_3 &g_4\\ g_5&g_6& g_7&g_8\\g_9&g_{10}&g_{11}&g_{12}\\g_{13}&g_{14}&g_{15}&g_{16}\end{pmatrix}$$

$$XNX^t-N=\begin{pmatrix} h_1 &h_2&h_3 &h_4\\ h_5&h_6& h_7&h_8\\h_9&h_{10}&h_{11}&h_{12}\\h_{13}&h_{14}&h_{15}&h_{16}\end{pmatrix}$$

Por último, vamos a $I = (f_i, g_i, h_i)$ ser el ideal generado por estos $48$ polinomios. Entonces, ¿cómo demostrar que el radical de $I$, es decir,$\sqrt I$, es generada por doce lineal de polinomios y un polinomio cuadrático ?

No tengo idea de cómo abordar este problema; se puede utilizar Nullstelensatz ... ?

Por favor ayuda

NOTA : Todas las matrices de $L,M,N$ son ortogonales , por lo que los tres la definición de las ecuaciones se pueden escribir como $(XL)(LX)^t=(XM)(MX)^t=(XN)(NX)^t=Id$. Ahora si podemos encontrar algún patrón en $XL,LX,MX,XM,NX,XN$, entonces podría ser útil para encontrar la puesta a cero del ideal de la $I$ ... También se $L,M,N$ son desfase matrices simétricas y como @Balaji sb señaló, $LM=-N$ ... esto significa $L,M,N$ obras como el $i,j,k$ en el Quaternion anillo ...

2voto

user28956 Puntos 6

Demasiado largo para un comentario. En M2:

R=QQ[x_1..x_16]
X=matrix {{x_1,x_2,x_3,x_4},{x_5,x_6,x_7,x_8},{x_9,x_10,x_11,x_12},{x_13,x_14,x_15,x_16}}
L=matrix {{0,-1,0,0},{1,0,0,0},{0,0,0,-1},{0,0,1,0}}
M=matrix {{0,0,0,-1},{0,0,-1,0},{0,1,0,0},{1,0,0,0}}
N=matrix {{0,0,-1,0},{0,0,0,1},{1,0,0,0},{0,-1,0,0}}
I=ideal(X*L*transpose(X)-L,X*M*transpose(X)-M,X*N*transpose(X)-N)
tex oo

$0,{x}_{2} {x}_{5}-{x}_{1} {x}_{6}+{x}_{4} {x}_{7}-{x}_{3} {x}_{8}+1,{x}_{2} {x}_{9}-{x}_{1} {x}_{10}+{x}_{4} {x}_{11}-{x}_{3} {x}_{12},{x}_{2} {x}_{13}-{x}_{1} {x}_{14}+{x}_{4} {x}_{15}-{x}_{3} {x}_{16},-{x}_{2} {x}_{5}+{x}_{1} {x}_{6}-{x}_{4} {x}_{7}+{x}_{3} {x}_{8}-1,0,{x}_{6} {x}_{9}-{x}_{5} {x}_{10}+{x}_{8} {x}_{11}-{x}_{7} {x}_{12},{x}_{6} {x}_{13}-{x}_{5} {x}_{14}+{x}_{8} {x}_{15}-{x}_{7} {x}_{16},-{x}_{2} {x}_{9}+{x}_{1} {x}_{10}-{x}_{4} {x}_{11}+{x}_{3} {x}_{12},-{x}_{6} {x}_{9}+{x}_{5} {x}_{10}-{x}_{8} {x}_{11}+{x}_{7} {x}_{12},0,{x}_{10} {x}_{13}-{x}_{9} {x}_{14}+{x}_{12} {x}_{15}-{x}_{11} {x}_{16}+1,-{x}_{2} {x}_{13}+{x}_{1} {x}_{14}-{x}_{4} {x}_{15}+{x}_{3} {x}_{16},-{x}_{6} {x}_{13}+{x}_{5} {x}_{14}-{x}_{8} {x}_{15}+{x}_{7} {x}_{16},-{x}_{10} {x}_{13}+{x}_{9} {x}_{14}-{x}_{12} {x}_{15}+{x}_{11} {x}_{16}-1,0,0,{x}_{4} {x}_{5}+{x}_{3} {x}_{6}-{x}_{2} {x}_{7}-{x}_{1} {x}_{8},{x}_{4} {x}_{9}+{x}_{3} {x}_{10}-{x}_{2} {x}_{11}-{x}_{1} {x}_{12},{x}_{4} {x}_{13}+{x}_{3} {x}_{14}-{x}_{2} {x}_{15}-{x}_{1} {x}_{16}+1,-{x}_{4} {x}_{5}-{x}_{3} {x}_{6}+{x}_{2} {x}_{7}+{x}_{1} {x}_{8},0,{x}_{8} {x}_{9}+{x}_{7} {x}_{10}-{x}_{6} {x}_{11}-{x}_{5} {x}_{12}+1,{x}_{8} {x}_{13}+{x}_{7} {x}_{14}-{x}_{6} {x}_{15}-{x}_{5} {x}_{16},-{x}_{4} {x}_{9}-{x}_{3} {x}_{10}+{x}_{2} {x}_{11}+{x}_{1} {x}_{12},-{x}_{8} {x}_{9}-{x}_{7} {x}_{10}+{x}_{6} {x}_{11}+{x}_{5} {x}_{12}-1,0,{x}_{12} {x}_{13}+{x}_{11} {x}_{14}-{x}_{10} {x}_{15}-{x}_{9} {x}_{16},-{x}_{4} {x}_{13}-{x}_{3} {x}_{14}+{x}_{2} {x}_{15}+{x}_{1} {x}_{16}-1,-{x}_{8} {x}_{13}-{x}_{7} {x}_{14}+{x}_{6} {x}_{15}+{x}_{5} {x}_{16},-{x}_{12} {x}_{13}-{x}_{11} {x}_{14}+{x}_{10} {x}_{15}+{x}_{9} {x}_{16},0,0,{x}_{3} {x}_{5}-{x}_{4} {x}_{6}-{x}_{1} {x}_{7}+{x}_{2} {x}_{8},{x}_{3} {x}_{9}-{x}_{4} {x}_{10}-{x}_{1} {x}_{11}+{x}_{2} {x}_{12}+1,{x}_{3} {x}_{13}-{x}_{4} {x}_{14}-{x}_{1} {x}_{15}+{x}_{2} {x}_{16},-{x}_{3} {x}_{5}+{x}_{4} {x}_{6}+{x}_{1} {x}_{7}-{x}_{2} {x}_{8},0,{x}_{7} {x}_{9}-{x}_{8} {x}_{10}-{x}_{5} {x}_{11}+{x}_{6} {x}_{12},{x}_{7} {x}_{13}-{x}_{8} {x}_{14}-{x}_{5} {x}_{15}+{x}_{6} {x}_{16}-1,-{x}_{3} {x}_{9}+{x}_{4} {x}_{10}+{x}_{1} {x}_{11}-{x}_{2} {x}_{12}-1,-{x}_{7} {x}_{9}+{x}_{8} {x}_{10}+{x}_{5} {x}_{11}-{x}_{6} {x}_{12},0,{x}_{11} {x}_{13}-{x}_{12} {x}_{14}-{x}_{9} {x}_{15}+{x}_{10} {x}_{16},-{x}_{3} {x}_{13}+{x}_{4} {x}_{14}+{x}_{1} {x}_{15}-{x}_{2} {x}_{16},-{x}_{7} {x}_{13}+{x}_{8} {x}_{14}+{x}_{5} {x}_{15}-{x}_{6} {x}_{16}+1,-{x}_{11} {x}_{13}+{x}_{12} {x}_{14}+{x}_{9} {x}_{15}-{x}_{10} {x}_{16},0$

Edit

radical I -- Too many heap sections: Increase MAXHINCR or MAX_HEAP_SECTS

What @Youngsu suggests in a comment, does seem to work:

J=prune I
associatedPrimes J

$\langle x_{12}+x_{15},x_{11}-x_{16},x_{10}+x_{13},x_9-x_{14},x_8+x_{14},x_7-x_{13},x_6-x_{16},x_5+x_{15},x_4+x_{13},x_3+x_{14},x_2-x_{15},x_1-x_{16},x_{13}^2+x_{14}^2+x_{15}^2+x_{16}^2-1\rangle$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X