<blockquote>
<p><strong>Posible duplicado:</strong><br>
<a href="http://math.stackexchange.com/questions/78546/help-with-conditional-expectation-question">Ayuda con pregunta de expectativa condicional</a> </p>
</blockquote>
<p>Tengo problema con el ejercicio, no resuelve.</p>
<p>Que $X$ $Y$ ser i.i.d. variables al azar con $E(X)$ definido. Muestran que</p>
<p>$$E(X|X+Y)=E(Y|X+Y)= \frac{X+Y}{2}$ $ (a.s.)</p>
<p>Muchas gracias por su ayuda.</p>
Respuestas
¿Demasiados anuncios?
HappyEngineer
Puntos
111
Davide Giraudo
Puntos
95813
Sugerencia:
- Utilizando la linealidad de la expectativa condicional (y una propiedad de otros), muestran que $E(X\mid X+Y)+E(Y\mid X+Y)=X+Y$.
- Mostrar que $E(X\mid X+Y)=E(Y\mid X+Y)$ por el siguiente argumento. Tomar $B$ un conjunto en el $\sigma$-álgebra generado por $X+Y$ ($B=(X+Y)^{-1}(B')$ $B'$), luego escriba %#% $ #% uso de independencia y una sustitución.