$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
\begin{align}&\color{#66f}{\large\sum_{k = 1}^{n}{n \choose k}{n \choose k - 1}}
=\sum_{k = 1}^{n}{n \choose k}\
\overbrace{\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n} \over z^{k}}
\,{\dd z \over 2\pi\ic}}^{\ds{n \choose k - 1}}
\\[3mm]&=\oint_{\verts{z}\ =\ 1}\pars{1 + z}^{n}
\sum_{k = 1}^{n}{n \choose k}\pars{1 \over z}^{k}\,{\dd z \over 2\pi\ic}
=\oint_{\verts{z}\ =\ 1}\pars{1 + z}^{n}
\bracks{\pars{1 + {1 \over z}}^{n} - 1}\,{\dd z \over 2\pi\ic}
\\[3mm]&=\oint_{\verts{z}\ =\ 1}\pars{1 + z}^{n}\,
\bracks{{\pars{1 + z}^{n} \over z^{n}} - 1}\,{\dd z \over 2\pi\ic}
\\[3mm]&=\underbrace{\oint_{\verts{z}\ =\ 1}%
{\pars{1 + z}^{2n} \over z^{n}}\,{\dd z \over 2\pi\ic}}_{\ds{2n \choose n - 1}}\ -\
\underbrace{\oint_{\verts{z}\ =\ 1}\pars{1 + z}^{n}\,{\dd z \over 2\pi\ic}}
_{\ds{=\ 0}}
={2n \choose n - 1}
\\[5mm]&=\color{#66f}{\large\half\,{2n + 2 \choose n + 1} - {2n \choose n}}
\end{align}
Tenga en cuenta que
\begin{align}\color{#c00000}{\half\,{2n + 2 \choose n + 1} - {2n \choose n}}&=
\half\,{\pars{2n + 2}! \over \pars{n + 1}!\pars{n + 1}!}
-{\pars{2n}! \over n!\,n!}
={\pars{2n + 2}! - 2\pars{n + 1}^{2}\pars{2n}!\over 2\bracks{\pars{n + 1}!}^{2}}
\\[3mm]&={2\pars{n + 1}\pars{2n + 1}\pars{2n}! - 2\pars{n + 1}^{2}\pars{2n}!\over
2\pars{n + 1}n\pars{n - 1}!\pars{n + 1}!}
\\[3mm]&={\pars{n + 1}\pars{2n + 1} - \pars{n + 1}^{2} \over \pars{n + 1}n}\,
{\pars{2n}! \over \pars{n - 1}!\pars{n + 1}!}
\\[3mm]&={\pars{n + 1}\bracks{\pars{2n + 1} - \pars{n + 1}} \over \pars{n + 1}n}\,
{2n \choose n - 1} = \color{#c00000}{{2n \choose n - 1}}
\end{align}