Empezar por el LHS
$$\sum_{r=0}^n {n\choose r} {n+r\choose r} (-1)^r 2^r = \sum_{r=0}^n {n\choose r} {n+r\choose n} (-1)^r 2^r \\ = \sum_{r=0}^n {n\choose r} (-1)^r 2^r [z^n] (1+z)^{n+r} = [z^n] (1+z)^n \sum_{r=0}^n {n\choose r} (-1)^r 2^r (1+z)^r \\ = [z^n] (1+z)^n (1-2(1+z))^n = [z^n] (1+z)^n (-1-2z)^n \\ = (-1)^n [z^n] (1+z)^n (1+2z)^n.$$
Obtenemos para el RHS
$$(-1)^n \sum_{r=0}^n {n\choose r}^2 2^r = (-1)^n \sum_{r=0}^n {n\choose r} {n\choose n-r} 2^r \\ = (-1)^n \sum_{r=0}^n {n\choose r} 2^r [z^{n-r}] (1+z)^n = (-1)^n [z^n] \sum_{r=0}^n {n\choose r} 2^r z^r (1+z)^n \\ = (-1)^n [z^n] (1+z)^n \sum_{r=0}^n {n\choose r} 2^r z^r = (-1)^n [z^n] (1+z)^n (1+2z)^n.$$
Los dos son idénticos y podemos concluir. (La segunda también se deduce por inspección, aquí hemos demostrado el método).