$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{p^{3} + q^{3} = 7pq^{2}\,,\qquad\mbox{LHS} = p^{3} + q^{3}\,,\quad\mbox{RHS} = 7pq^{2}}$.
\begin{align}
\pars{p\ odd,q\ odd} & \implies \pars{\mbox{LHS},\mbox{RHS}} = \pars{even,odd}
\\[1mm]
\pars{p\ odd,q\ even} & \implies \pars{\mbox{LHS},\mbox{RHS}} = \pars{odd,even}
\\[1mm]
\pars{p\ even,q\ odd} & \implies \pars{\mbox{LHS},\mbox{RHS}} = \pars{odd,even}
\\[1mm]\require{cancel}
\cancel{\pars{p\ even,q\ even}} & \implies \cancel{\pars{\mbox{LHS},\mbox{RHS}}} = \cancel{\pars{even,even}}:\ p\ \mbox{and}\ q\ \mbox{have common factors.}
\end{align}