Supuestamente deberíamos tener un bijection $$f: M(n, a) \to \bigcup_{k=0}^{\left\lfloor n/2 \right\rfloor}\left( B(a, n-2k)\times M(k, a)\right)$$ (where $B(a, n-2k)$ is simply the set of all $n-2k$-element subsets of $\{1, 2, \los puntos, un\}$ and $M(n, a)$ is the set of $n$-element multisets with $un$ types). So take the function $$f: (c_1, \dots, c_a) \mapsto (S, (d_1, \dots, d_a))$$ where $d_i = \left\lfloor c_i/2 \right\rfloor$ and $S = \{\alpha \in \{1, \dots,\} : \left\lfloor c_\alpha/2 \right\rfloor \neq c_\alpha/2\}$. Now, it's probably worth mentioning that the set $S$ as defined here is always going to be of size $n-2k$ for some $k$ between $0$ and $\a la izquierda\lfloor n/2 \right\rfloor$, since if $n$ is even, an even number of terms in the multiset will be odd, and if $$ n es impar, un número impar de términos tendrán un valor impar.
La inversa de esta función va a ser $$g: \bigcup_{k=0}^{\left\lfloor n/2 \right\rfloor}\left( B(a, n-2k)\times M(k, a)\right) \to M(n, a)$$ defined by $$g : (S, (d_1, \dots, d_a)) \mapsto (c_1, \dots, c_a)$$ where $c_i = \begin{cases} 2d_i & i \notin S \\ 2d_i + 1 & i \in S \end{casos}$. It should be clear that this is the inverse of $f$, y por lo tanto, estamos bien.