1) La tarjeta que elija, es 4:
¿Cuántas permutaciones (pares ordenados) que cumplen los criterios (uno es 4, y la otra es de color negro) tenemos que hacer? Podemos divde en dos grupos distintos:
Primer grupo: una tarjeta es una tarjeta negra que no es 4, y la otra tarjeta es de 4. Hay 24 tarjetas negras que no son 4 y cada uno puede ser combinado con cuatro diferentes 4s. Hay $24\times4=96$ pares ordenados comenzando con una tarjeta negra que no es de 4 y 96 pares ordenados comenzando con 4.
Segundo grupo: una tarjeta, es un negro de 4 y la otra tarjeta es cualquier otro 4. Básicamente, todos los pares ordenados de 4s son válidos (y tenemos $4\times3=12$ de ellos), excepto 2 pares ordenados de rojo 4s. El número total de odrered pares de satisfacer los criterios para el segundo grupo es $12-2=10$
Así que en total tenemos $2\times96+10=202$ pares ordenados. Hay 96 pares ordenados desde el primer grupo de comenzar con 4 y 10 pares ordenados comenzando con 4. Todos los pares ordenados son igualmente posible para que la probabilidad de que la primera tarjeta es de 4 es:
$$\frac{96+10}{2\times96+10}=\frac{106}{202}=\frac{53}{101}\approx0.524752$$
I did a Monte Carlo simulation with 20.000.000+ draws satisfying the conditions of the problem and got 0.524895 which is within 0.03% from the calculated value. The value $\frac{11}{21}\approx0.523810$ obtained by @drhab is obviously not a better match.
2) The card we pick is black:
Again, we have two groups of ordered pairs and we already calculated that the total number is 202.
First group: one card is a black card that is not 4 (24 possibilities), the other card is 4 (4 possibilities, 2 of them black). How many ordered pairs start with a black card? There are $24\times4=96$ ordered pairs starting with a black card that is not 4, plus $2\times24=48$ ordered pairs starting with a black 4. In total, we have $96+48=144$ ordered pairs starting with a black card.
Second group: one card is a black 4, the other card is any other 4. How many ordered pairs start with a black card? There are two black fours and the second card can be any of the remaining three. So in total there are $2\times3=6$ ordered pairs starting with a black card.
Taking both groups into the account there are $144+6=150$ ordered pairs starting with a black card, so the probability is:
$$\frac{150}{202}=\frac{75}{101}\approx0.742574$$
I did a Monte Carlo simulation with 25.000.000+ draws satisfying the conditions of the problem and got 0.74254516.
3) The card we pick is a face card:
This is the easiest case.
First group: one card is a black card that is not 4 (24 possibilities), the other card is 4 (4 possibilities, 2 of them black). There are 6 black face cards (J,Q,K) so in total we have $6\times4=24$ ordered pairs starting with a face card.
Second group: one card is a black 4, the other card is any other 4. You cannot pick a face card from any ordered pair belonging to this group.
Taking both groups into account, you have only $24$ ordered pairs starting with a face card so the probability is:
$$\frac{24}{202}=\frac{12}{101}\approx0.118881$$
Hice una simulación de Monte Carlo con 10.000.000+ dibuja la satisfacción de las condiciones del problema y tengo 0.11883492.
Si usted está interesado en Monte Carlo, aquí está el código Java que he usado:
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
class Card {
public int suite; // 0,1 => black, 2,3 => red
public int value; // from 2 to 14
public Card(int suite, int value) {
super();
this.suite = suite;
this.value = value;
}
public boolean isFour() {
return value == 4;
}
public boolean isBlack() {
return suite < 2;
}
public boolean isFaceCard() {
return value >= 12 && value <= 14;
}
}
class Deck {
private List<Card> cards = new ArrayList<>();
private Card c1, c2;
public Deck() {
for(int value = 2; value <= 14; value++) {
for(int suite = 0; suite <= 3; suite++) {
cards.add(new Card(suite, value));
}
}
}
public void drawOneBlackAndOneFour() {
Random rnd = new Random();
Collections.shuffle(cards, rnd);
while(true) {
int i = rnd.nextInt(52);
c1 = cards.get(i);
while(true) {
int j = rnd.nextInt(52);
if(i != j) {
c2 = cards.get(j);
break;
}
}
if(c1.isBlack() && c2.isFour()) {
break;
}
if(c2.isBlack() && c1.isFour()) {
break;
}
}
}
public boolean isFirstCardFour() {
return c1.isFour();
}
public boolean isFirstCardBlack() {
return c1.isBlack();
}
public boolean isFirstCardFaceCard() {
return c1.isFaceCard();
}
}
public class Test {
public static void main(String[] args) {
Deck deck = new Deck();
int ok = 0, total = 0;
while(true) {
total++;
deck.drawOneBlackAndOneFour();
if(deck.isFirstCardBlack()) {
ok++;
}
System.out.println(String.format("%d/%d = %.8f", ok, total, (double)ok/(double)total));
}
}
}