Supongamos que estamos resolviendo el siguiente ODE$${\mathrm{d}y\over \mathrm{d}x}={y\over x}$$ then we can solve it by seperation of variables method. But if we have to solve $${\mathrm{d}^2y\over \mathrm{d}x^2} = {y\over x}$$ then why cant we seperate $ \ mathrm {d} ^ 2y \ over \ mathrm {d} x ^ 2 $?
Respuestas
¿Demasiados anuncios?
Davide Morgante
Puntos
441
Tienes que ser precavido: recuerda que$$\frac{d^2y}{dx^2} = \frac{d\left(\frac{dy}{dx}\right)}{dx}$$ So you could use separation of variables, but your ODE will become $$\frac{1}{y}d\left(\frac{dy}{dx}\right) = \frac{1}{x}dx$$ and not $$\frac{1}{y}dydy = \frac{1}{x}dxdx\;\;\;\;\color{red}{\text{Wrong}}$ $
Mostafa Ayaz
Puntos
1124