¿Por qué$\sum_{n=1}^{\infty}\frac{n\left(\sin x\right)^{n}}{2+n^{2}}$ no es uniformemente convergente en$[0,\;\frac{\pi}{2})$?
Estaba pensando que necesitamos mostrar sumas parciales \begin{equation} \left|S_{2n}\left(x\right)-S_{n}\left(x\right)\right|\nrightarrow0 \end {equation} para algunos$x\in[0,\;\frac{\pi}{2})$.
¿Alguna pista?
¿Es esto correcto?
\begin{align} \left|S_{2n}\left(x\right)-S_{n}\left(x\right)\right| & =\left|\frac{\left(n+1\right)\left(\sin x\right)^{n+1}}{2+\left(n+1\right)^{2}}+\cdots+\frac{2n\left(\sin x\right)^{2n}}{2+\left(2n\right)^{2}}\right|\\ & =\frac{\left(n+1\right)\left(\sin x\right)^{n+1}}{2+\left(n+1\right)^{2}}+\cdots+\frac{2n\left(\sin x\right)^{2n}}{2+\left(2n\right)^{2}}\nonumber \\ & \geq\frac{\left(n+1\right)\left(\sin x\right)^{n+1}}{2+\left(2n\right)^{2}}+\cdots+\frac{2n\left(\sin x\right)^{2n}}{2+\left(2n\right)^{2}}\nonumber \\ & \geq\frac{\left(n+1\right)\left(\sin x\right)^{n+1}}{2+\left(2n\right)^{2}}+\cdots+\frac{\left(n+1\right)\left(\sin x\right)^{2n}}{2+\left(2n\right)^{2}}\nonumber \\ & \geq\frac{\left(n+1\right)\left(\sin x\right)^{2n}}{2+\left(2n\right)^{2}}+\cdots+\frac{\left(n+1\right)\left(\sin x\right)^{2n}}{2+\left(2n\right)^{2}}\nonumber \\ & =\frac{n\left(n+1\right)\left(\sin x\right)^{2n}}{2+\left(2n\right)^{2}}\nonumber \end {align} luego dejamos$x=\frac{\pi}{2}-\frac{1}{n}$, entonces tenemos \begin{align} \left|S_{2n}\left(x\right)-S_{n}\left(x\right)\right| & \geq\frac{n\left(n+1\right)\left(\sin x\right)^{2n}}{2+\left(2n\right)^{2}}\\ & =\frac{n\left(n+1\right)\left(\sin\left(\frac{\pi}{2}-\frac{1}{n}\right)\right)^{2n}}{2+\left(2n\right)^{2}}\nonumber \\ & \rightarrow0.25,\:not\:0\nonumber \end {align}