Usted puede reducir su integral a las dos integrales que ya han sido resueltos en este sitio:
Deje $x=t^2$, realizar un parcial fracción de descomposición y de integrar por partes en la segunda parte integrante de encontrar
\begin{align}
I &\equiv \int\limits_0^1 \frac{-\ln(x) \ln(1+\sqrt{x})}{1-x} \, \mathrm{d}x \\
&= 4 \int \limits_0^1 [-\ln(t) \ln(1+t)] \frac{t}{(1-t)(1+t)} \, \mathrm{d}t \\
&= 2 \int \limits_0^1 \frac{-\ln(t) \ln(1+t)}{1-t} \, \mathrm{d} t - 2 \int \limits_0^1 \frac{-\ln(t) \ln(1+t)}{1+t} \, \mathrm{d} t \\
&= 2 \int \limits_0^1 \frac{-\ln(t) \ln(1+t)}{1-t} \, \mathrm{d} t - \int \limits_0^1 \frac{\ln^2 (1+t)}{t} \, \mathrm{d} t \\
&\equiv 2 I_1 - I_2 \, .
\end{align}
En esta pregunta $I_2 = \frac{\zeta(3)}{4}$ está demostrado (FDP respuesta del no uso el contorno de la integración o la polylogarithm). $I_1 = \frac{\pi^2}{4} \ln(2) - \zeta(3)$ se deriva de aquí (la respuesta se basa en el contorno de integración y aunque sería bueno tener una simplificación de la prueba). Así obtenemos el resultado sugiere que en los comentarios:
$$ I = 2 \left(\frac{\pi^2}{4} \ln(2) - \zeta(3)\right) - \frac{\zeta(3)}{4} = \frac{\pi^2}{2} \ln(2) - \frac{9}{4} \zeta(3) \, . $$