Motivados por la más fácil integral $$ \int \limits_0^\infty \left[\frac{1}{x^2} - \frac{1}{x \sinh(x)}\right] \mathrm{d} x = \ln(2) \, ,$$ He estado tratando de calcular
$$ I \equiv \int \limits_0^{\pi/2} \left[\frac{1}{x \sin(x)} - \frac{1}{x^2} \right] \mathrm{d} x \approx 0.29172334953491321 \, .$$
No he encontrado una forma cerrada de expresión y, sin embargo y a la inversa simbólico de las calculadoras no dan resultados. Sin embargo, algunas otras representaciones para $I$ pueden ser creadas usando los métodos siguientes:
Laurent serie
La serie de Laurent de la función cosecante es dada por $$\csc(x) = \frac{1}{x} + \sum \limits_{k=1}^\infty \frac{\lvert \mathrm{B}_{2k}\rvert (4^k - 2)}{(2k)!} x^{2k-1}$$ in terms of the Bernoulli numbers $(\mathrm{B}_n)_{n \in \mathbb{N}_0}$ and has radius of convergence $\pi$ , so we can integrate termwise to obtain $$ \tag{1} I = \sum \limits_{k=1}^\infty \frac{\lvert \mathrm{B}_{2k}\rvert \left[2-4^{-(k-1)}\right] \pi^{2k-1}}{(2k-1)(2k)!} \, .$$
Polo de expansión
La serie $$ \csc(x) = \frac{1}{x} + 2 x \sum \limits_{n=1}^\infty \frac{(-1)^{n-1}}{\pi^2 n^2 - x^2}$$ yields $$\tag{2} I = \frac{1}{\pi} \sum \limits_{n=1}^\infty \frac{(-1)^{n-1}}{n} \ln\left(\frac{2n+1}{2n-1}\right) \, .$$ Expanding the logarithm only leads to $$ \tag{3} I = \frac{1}{\pi} \sum \limits_{k=1}^\infty \frac{\eta(2k)}{(2k-1) 4^{k-1}} \, ,$$ which reduces to $(1)$ when the special values of the eta functions are used. Summation by parts turns $(2)$ en $$ \tag{4} I = \frac{4}{\pi} \sum \limits_{n=1}^\infty \frac{(-1)^{n-1} (2n+1) \ln(2n+1)}{(2n+1)^2 -1} \, . $$ Esto también puede ser escrito como $$ \tag{5} I = \frac{4}{\pi} \beta'(1) + \frac{1}{\pi} \sum \limits_{n=1}^\infty \frac{(-1)^{n-1} \ln(2n+1)}{2n^3+3n^2+n} \, ,$$ donde $\beta$ es la de Dirichlet función beta (hay una razonable bonita expresión para $\beta'(1)$).
Integración por partes
Hay varias maneras posibles de integrar por partes. Uno de ellos muestra que $$ \tag{6} I = \frac{2}{\pi} \ln \left(\frac{4}{\pi}\right) + \frac{1}{2} \int \limits_0^{\pi/4} \frac{\ln[\tan(t)/t]}{t^2} \, \mathrm{d} t $$ holds. I am not sure how to proceed from here though. Plugging in the Maclaurin series of $\ln[\tan(t)/t]$ reproduces $(1)$ .
El contorno de integración (debido a eyeballfrog)
Como se ha demostrado en eyeballfrog la respuesta también tenemos $$ \tag{7} I = \frac{2}{\pi} - \int \limits_0^\infty \frac{t}{1+t^2} \, \operatorname{sech}\left(\frac{\pi}{2} t\right) \, \mathrm{d} t \, .$$ Using the pole expansion of $\operatorname{sech}$ yields $(4)$ de nuevo.
Eso es todo lo que tengo en el momento, así que mi pregunta es:
Es posible encontrar una forma cerrada de la expresión para el valor de $I$ o podemos, al menos, volver a escribir cualquier de la integral o la serie de la representación en términos de una adecuada función especial?