¿Cómo podemos demostrar que $$ \sum_{i=1}^{n}(x_i-\bar{x})^2\lt\sum_{i=1}^{n}(x_i-a)^2 $$
donde $a$ es cualquier valor distinto de $\bar{x}$, la media aritmética.
Mi Intento: $$ \sum_{i=1}^{n}(x_i^2-2x_i\bar{x}+\bar{x}^2)\lt\sum_{i=1}^{n}(x_i^2-2x_ia+a^2)\\\sum_{i=1}^{n}x_i^2-2\bar{x}\sum_{i=1}^{n}x_i+\sum_{i=1}^{n}\bar{x}^2\lt\sum_{i=1}^{n}x_i^2-2a\sum_{i=1}^{n}x_i+\sum_{i=1}^{n}a^2\\-2\bar{x}.n\bar{x}+n.\bar{x}^2\lt-2a.n\bar{x}+n.a^2\\-2\bar{x}^2+\bar{x}^2\lt-2a\bar{x}+a^2\\-\bar{x}^2\lt-2a\bar{x}+a^2 $$ Pero, ¿cómo puedo continuar o hay alguna manera mejor ?