Sólo quiero señalar que, una versión general de este existe (Almodavar, Hall et.al https://cs.uwaterloo.ca/journals/JIS/VOL19/Moll/moll3.pdf).
\begin{eqnarray*}
\prod_{n=0}^{\infty}{\left(\frac{2\alpha n+\beta}{2\alpha n+\gamma}\right)^{(-1)^{n}}} &=& 2^{\frac{\gamma-\beta}{2\alpha}} \frac{\Gamma^{2}\left(\frac{\gamma}{4\alpha}\right)}{\Gamma^{2}\left(\frac{\beta}{4\alpha}\right)} \frac{\Gamma\left(\frac{\beta}{2\alpha}\right)}{\Gamma\left(\frac{\gamma}{2\alpha}\right)}
\end{eqnarray*}
Tomando $\ln$, a continuación, tendrá,
\begin{eqnarray*}
\sum_{n=0}^{\infty}(-1)^{n} {\ln \left(\frac{2\alpha n+\beta}{2\alpha n+\gamma}\right)} &=& \sum_{n=0}^{\infty}{\ln \left(\frac{2\alpha n+\beta}{2\alpha n+\gamma}\right)^{(-1)^{n}}} \\
&=& \ln \prod_{n=0}^{\infty}{\left(\frac{2\alpha n+\beta}{2\alpha n+\gamma}\right)^{(-1)^{n}}} \\
&=& \ln \left(2^{\frac{\gamma-\beta}{2\alpha}} \frac{\Gamma^{2}\left(\frac{\gamma}{4\alpha}\right)}{\Gamma^{2}\left(\frac{\beta}{4\alpha}\right)} \frac{\Gamma\left(\frac{\beta}{2\alpha}\right)}{\Gamma\left(\frac{\gamma}{2\alpha}\right)}\right)
\end{eqnarray*}
La pregunta de interés aquí es un caso de$\alpha=1,\beta=2,$$\gamma=1$, que se convertirá,
\begin{eqnarray*}
\sum_{n=0}^{\infty}(-1)^{n} {\ln \left(\frac{2 n+2}{2 n+1}\right)} &=& \ln \left(2^{-\frac{1}{2}} \frac{\Gamma^{2}\left(\frac{1}{4}\right)}{\Gamma^{2}\left(\frac{1}{2}\right)} \frac{\Gamma\left(1\right)}{\Gamma\left(\frac{1}{2}\right)}\right) \\
&=& \ln \left( \frac{1}{\sqrt{2 \pi}}\frac{\Gamma^{2}\left(\frac{1}{4}\right)}{\pi} \right) \\
&\approx& 0.512377
\end{eqnarray*}
Este es el mismo resultado lo que se demuestra claramente por SimplyBeautifulArt. Recordemos que $\Gamma\left(\frac{3}{4}\right)=\frac{\sqrt{2}\pi }{\Gamma\left(\frac{1}{4}\right)}$.