Comenzar realizando la sustitución $u=\frac 1x$, $\text dx=-\frac {1}{u^2}\text du$:
\begin{align}\int_1^\infty\left(\frac{\ln x}{(x-1)(2x-1)}\right)\text dx&=\int_1^0\left(\left(\frac{\ln\left(\frac 1u\right)}{\left(\frac 1u-1\right)\left(2\frac 1u-1\right)}\right)\times \left(-\frac {1}{u^2}\right)\right)\text du\ &=-\int_0^1\left(\frac{-\ln\left(\frac 1u\right)}{(u-2)(u-1)}\right) du\ \end {Alinee el}
Podemos ahora escribir la integral como sigue, utilizando la fracción parcial descomposición:
\begin{align}-\int_0^1\left(\frac{-\ln\left(\frac 1u\right)}{(u-2)(u-1)}\right) du&=-\int_0^1\left(-\ln\left(\frac 1u\right)\left(\frac{1}{(u-2)(u-1)}\right)\right)\text du\ &=-\int_0^1\left(-\ln\left(\frac 1u\right)\left(\frac{1}{u-2}-\frac{1}{u-1}\right)\right)\text du\ &=-\int_0^1\left(\ln\left(\frac 1u\right)\left(\frac{1}{u-1}-\frac{1}{u-2}\right)\right)\text du\end {Alinee el}
Esto ahora nos deja con:
\begin{align}-\int_0^1\left(\ln\left(\frac 1u\right)\left(\frac{1}{u-1}-\frac{1}{u-2}\right)\right)\text du&=-\left(\left(\int_0^1\ln\left(\frac 1u\right)\frac1{u-1}\right)\text du-\left(\int_0^1\ln\left(\frac 1u\right)\frac1{u-2}\right)\text du\right)\ &=\left(\int_0^1\ln\left(\frac 1u\right)\frac1{u-2}\text du\right)-\left(\int_0^1\ln\left(\frac 1u\right)\frac1{u-1}\text du\right)\ &=\left(\int_0^1-\ln(u)\frac1{u-2}\text du\right)-\left(\int_0^1-\ln(u)\frac1{u-1}\text du\right)\ &=\left(-\int_0^1\frac{\ln u}{u-2}\text du\right)-\left(-\int_0^1\frac{\ln u}{u-1}\text du\right)\ &=\left(\int_0^1\frac{\ln u}{u-1}\text du\right)-\left(\int_0^1\frac{\ln u}{u-2}\text du\right)\end {Alinee el}
¿Se puede seguir desde aquí? De un vistazo, yo recomendaría tratar de integración por partes.