Respuestas
¿Demasiados anuncios?Tenga en cuenta que $\sin^3 x = \frac34 \sin x- \frac14 \sin(3x)$ y para cualquier $a\in\mathbb{R}$, % $$ \begin{align} \int{0}^{\infty} \frac{\sin(ax)}{e^x - 1} dx &= \int{0}^{\infty} \frac{\sin (ax) e^{-x}}{1 - e^{-x}} dx = \int{0}^{\infty} \left( \sum{n=1}^{\infty} \sin(ax) \, e^{-nx} \right) dx \ &=\sum{n=1}^{\infty} \int{0}^{\infty} \sin (ax) \, e^{-nx} \; dx = \sum_{n=1}^{\infty} \frac{a}{n^2+a^2}. \end{alinee el}. por lo tanto de $$ $$\int0^\infty\frac{\sin^3 x}{e^x-1}dx=\frac{3}{4}\sum{n=1}^{\infty} \left(\frac{1}{n^2+1}-\frac{1}{n^2+9}\right).$ $ para encontrar un ver fórmula cerrada Cómo suma $\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2}$?
$$\sin^3 x=\dfrac34\sin x-\dfrac14\sin3x$$
con zeta definición de función $\displaystyle\int_0^\infty\dfrac{u^{x-1}}{e^u-1}du=\Gamma(x)\zeta(x)$, e $\sin$ expansión se puede escribir \begin{align} \int_0^\infty\dfrac{\sin^3x}{e^x-1}dx &= \dfrac34\int_0^\infty\dfrac{\sin x}{e^x-1}dx-\dfrac14\int_0^\infty\dfrac{\sin3x}{e^x-1}dx \\ &= \sum_{n=0}^\infty\dfrac34\dfrac{(-1)^n}{(2n+1)!}\int_0^\infty\dfrac{x^{2n+1}}{e^x-1}dx-\sum_{n=0}^\infty\dfrac14\dfrac{(-1)^n3^{2n+1}}{(2n+1)!}\int_0^\infty\dfrac{x^{2n+1}}{e^x-1}dx \\ &= -\dfrac{3}{4}\sum_{n=1}^\infty i^{2n}\zeta(2n)+\dfrac{1}{12}\sum_{n=1}^\infty (3i)^{2n}\zeta(2n) \\ &= -\dfrac{3}{4}\frac12\left(1-\pi i\cot\pi i\right) + \dfrac{1}{12}\frac12\left(1-3\pi i\cot3\pi i\right)\\ &= \color{blue}{-\dfrac13 + \dfrac{3}{8}\pi \coth\pi - \dfrac{1}{8}\pi \coth3\pi} \end{align} que se utilizó $\displaystyle\sum_{n=1}^\infty x^{2n}\zeta(2n)=\dfrac12\left(1-\pi x\cot\pi x\right)$.
Utilizaré el mismo método como se ve aquí: Integral $\int_0^{\infty} \frac{x\cos^2 x}{e^x-1}dx$ $$I(k)=\int0^\infty \frac{\sin(kx)}{e^x-1}dx=\sum{s=1}^\infty \int0^\infty \sin(kx)e^{-sx}dx$$ The middle integral can be taken as the laplace transform of $\sin (kx) = \frac {k} {s ^ 2 + k ^ 2} $ giving: $$I=\sum{n=1}^\infty \frac{k}{n^2+k^2}$$ But we have: $$\pi \coth \pi z = \frac{1}{z} + \sum{n=1}^{\infty} \frac{2z}{n^2+z^2} \rightarrow \sum{n=1}^\infty\frac{k}{n^2+k^2}=\frac{\pi } \coth \pi 2 k-\frac1 {2 k} $$ ahora usted puede terminar.
$$ \sin^3 x = \frac 14\left(3\sin x-\sin(3x)\right)\\ \frac{1}{e^x-1} = e^{-x}\sum_{k=0}^{\infty}e^{-kx}\;\;\mbox{con }\;\; x > 0 $$
entonces
$$ \int_0^\infty\frac{\sin^3{x}}{e^x-1}\,\mathrm dx = \frac 14\int_0^{\infty}\left(\left(3\sin x-\sin(3x)\right)e^{-x}\sum_{k=0}^{\infty}e^{-kx}\right) \mathrm dx $$
ahora la adición de
$$ \frac 14\int_0^{\infty}\left(\left(3\cos x-\cos(3x)\right)e^{-x}\sum_{k=0}^{\infty}e^{-kx}\right) \mathrm dx+ i\left(\frac 14\int_0^{\infty}\left(\left(3\sin x-\sin(3x)\right)e^{-x}\sum_{k=0}^{\infty}e^{-kx}\right) \mathrm dx\right) $$
tenemos
$$ I = \frac 14\int_0^{\infty}\left(3e^{ix}-e^{e^{i 3x}}\right) e^{-x}\sum_{k=0}^{\infty}e^{-kx} \mathrm dx $$
o
$$ I = \frac 14\left(\int_0^{\infty}3\sum_{k=0}^{\infty}e^{-(k+1-i)x}\right)\mathrm dx - \frac 14\left(\int_0^{\infty}\sum_{k=0}^{\infty}e^{-(k+1-3i)x}\right)\mathrm dx $$
por lo tanto
$$ I = \frac 14\left(\sum_{k=0}^{\infty}\frac{3}{k+1-me}-\frac{1}{k+1-3i}\right) = \frac 14\sum_{k=0}^{\infty}\left(\frac{3(k+1)}{(k+1)^2+1}-\frac{k+1}{(k+1)^2+3^2}+i\left(\frac{24}{\left((k+1)^2+1\right) \left((k+1)^2+3^2\right)}\right)\right) $$
y, finalmente,
$$ \int_0^\infty\frac{\sin^3{x}}{e^x-1}\,\mathrm dx =\frac 14\sum_{k=0}^{\infty}\left(\frac{24}{\left((k+1)^2+1\right) \left((k+1)^2+3^2\right)}\right) = \pi \cosh ^3(\pi ) \text{csch}(3 \pi )-\frac{19}{30} $$