$F(x) =\int \limits_{\tan x}^{\cot x}\sqrt{1+t^2}\,\mathrm{d}t\,\,$ entonces $F'(\pi/4) =?$
$$F(x) =\int \limits_{\tan x}^{\cot x}\sqrt{1+t^2}\,\mathrm{d}t$$
$$F(x) =-\int \limits_{0}^{\cot x}\sqrt{1+t^2}\,\mathrm{d}t + \int \limits_{0}^{\tan x}\sqrt{1+t^2}\,\mathrm{d}t$$
Según Teorema Fundamental Parte 1 :
\begin{align}Old\\ F'(x) & = f(b(x))\cdot b'(x)-f(a(x))\cdot a'(x) \\ F'(x) & = \sqrt{1+x^2}(-\csc^2x) - \sqrt{1+x^2}(\sec^2x) \\ F'(x) & = -\sqrt{1+x^2}(\csc^2x + \sec^2x) \\ F'(x) & = -\sqrt{1+x^2}(1) \\ F'(\pi/4) & = -\sqrt{1+(\pi/4)^2} \\ \end{align}
Nuevo $F'(x) = \sqrt{1+x^2}(d/dx(\sqrt{1+\cot^2x}) - \sqrt{1+x^2}(d/dx(\sqrt{1+\tan^2x})$ $F'(x) = \sqrt{1+x^2}(d/dx(\sqrt{\csc^2x}) - \sqrt{1+x^2}(d/dx(\sqrt{\sec^2x})$ $F'(x) = \sqrt{1+x^2}[(-\csc{x}\cot{x}) - (-\sec{x}\tan{x}))$ $F'(\pi/4) = \sqrt{1+(\pi/4)^2}[(-\csc{(\pi/4)}\cot{(\pi/4)}) - (\sec{(\pi/4)}\tan{(\pi/4)}))$
?