\newcommand{\ángulos}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}
\ds{{1 \over s^{3}\pars{s^{2} + 1}} :\ ?}
- Para el \ds{\color{#f00}{\mbox{pole at}\ s = 0}}, el residuo es dada por
\begin{align}
{1 \over 2!}\,\lim_{s \to 0}\,\totald[2]{}{s}\bracks{%
{s^{3} \over s^{3}\pars{s^{2} + 1}}\,\expo{st}} & =
{1 \over 2}\,\lim_{s \to 0}\,\totald[2]{}{s}\bracks{%
{\pars{1 - s^{2}}\pars{1 + st + \half\,s^{2}t^{2}}}}
\\[4mm] & =
\color{#f00}{-1 + \half\,t^{2}}
\end{align}
- Para el \ds{\color{#f00}{\mbox{poles at}\ s = \pm\ic}}, el residuo es dada por
\begin{align}
\left.\pars{s \pm \ic}{\expo{st} \over s^{3}\pars{s - \ic}\pars{s + \ic}}
\right\vert_{\ s\ \to\ \pm\ic} & =
{\expo{\pm\ic t} \over \pm\ic\pars{\mp\ic\ \mp\ \ic}} =
\color{#f00}{\half\,\expo{\pm\ic t}}
\end{align}
El resultado final se convierte en:
\pars{-1 + \media\,t^{2}} + \pars{\media\,\expo{\ic t}} + \pars{\media\,\expo{-\ic t}}
=
\color{#f00}{-1 + \media\,t^{2} + \cos\pars{t}}