En lugar de sustituir $x = \dfrac {1}{y}$ trata de sustituir $x = \dfrac {1}{2y}$ .
Esto te da:
\begin {alineado*}I &= \displaystyle\int_ {0}^{ \infty } \dfrac {2x^2-1}{4x^4+1}{4x^4+1},dx \\ &= \displaystyle\int_ { \infty }^{0} \dfrac { \tfrac {1}{2y^2}-1}{ \tfrac {1}{4y^4}+1} \cdot - \dfrac \\ &= \displaystyle\int_ {0}^{ \infty } \dfrac { \tfrac {1}{2y^2}-1}{ \tfrac {1}{4y^4}+1} \cdot \dfrac \\ &= \displaystyle\int_ {0}^{ \infty } \dfrac {\a6}{\b1}{\b1}{\b1}4y^4+1},dy{\b}{\b} \\ &= - \displaystyle\int_ {0}^{ \infty } \dfrac {\a6}{\b1}{\b1}{\b1}{\b1}{\b1}{\b1}{\b1}{\b1}Aquí.{\b}} \\ &= -I. \end {alineado*}
Desde $I = -I$ Tenemos $I = 0$ .