Tengo un problema que me he estado rompiendo la cabeza para resolverlo y no tengo la información necesaria para saber si estoy en lo cierto o no, así que espero que me podáis ayudar. Voy a intentar hacerlo lo más sencillo y claro posible. Voy a empezar con un ejemplo de carreras de caballos y luego entrar en mi dilema
El caballo A y el caballo B van a competir entre sí en una carrera de dos caballos.
Se han enfrentado 12 veces y el caballo A ha ganado cinco veces y el caballo B ha ganado siete veces. Así que el caballo A ha ganado el 41,7% de las veces pero....
Hay dos Jockeys ROJO y AZUL
3 de 5 de esas victorias se produjeron cuando Blue Jockey montaba al caballo A. Sin embargo, Blue Jockey sólo lo montó una vez en los días en que el caballo A perdió.
Hoy el Jockey Azul está montando el caballo A, así que tenemos un 60% de posibilidades si sólo usamos ese Jockey Azul 3 de cada cinco hechos. Pero sé que tenemos que considerar la cantidad total de carreras también
Hasta ahora tengo esto entonces
P(el caballo A gana dado que el jockey azul monta) = .60 X .417 /.333
porque el 60% de 3 de las 5 victorias fueron cuando Blue estaba montando. El 41,7% de victorias en total y el 0,333 porque Blue Jockey ha montado el caballo 4 veces de las doce carreras.
¿Verdad?
Ahora es cuando mi pregunta con los cambios
Dos caballos A y B, pero cinco jockeys. Así que vamos a utilizar algunas estadísticas inventadas rápidamente por el bien del tiempo.
El caballo A tiene un 66% de posibilidades de ganar, pero cuando el Jockey Black monta el caballo A, el caballo A gana el 70,5% de las veces.
ahora se ponen los colores de los jockeys en un frasco para sacarlos y ver quién va a montar el caballo A. las siguientes son las probabilidades en % de que se saque el color
Rojo 19% Negro 21% Verde 13% Azul 37% Rosa 10%.
Sería mi fórmula para ver el porcentaje real que gana el caballo A:
Horse A wins given Black rides = .705 X .66/.21
lo que me da 2,21 que es ¿QUÉ? ¿Qué significa eso?
Y
si se tratara de un piloto diferente, digamos rosa, y para simplificar, el mismo porcentaje de victorias, el denominador sería el 0,10
Esto me está haciendo perder el sueño, solo bromeaba (un poco) :)