No tengo (todavía) una solución completa por ahora.
Dejemos que $I=\displaystyle \int_0^1 (\arctan(x))^2 \ln\Big(\dfrac{1+x^2}{2x^2}\Big)dx$
$I=\displaystyle \int_0^1 (\arctan(x))^2\ln(1+x^2)dx-2\int_0^1 (\arctan(x))^2\ln(x)dx-\ln(2)\int_0^1 (\arctan(x))^2dx$
Sé cómo calcular la última ;)
Dejemos que $J=\displaystyle \int_0^{\frac{\pi}{2}} \log(\sin x)dx$
El valor de $J$ es bien conocido por ser $-\dfrac{\pi}{2}\ln 2$
Realizar la integración por partes:
$J=\displaystyle \Big[x\log(\sin x)\Big]_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}}\dfrac{x}{\tan x}dx=-\int_0^{\frac{\pi}{2}}\dfrac{x}{\tan x}dx$
Dejemos que $K=-J$
Realizar el cambio de variable $u=\tan x$
$K=\displaystyle \int_0^{+\infty}\dfrac{\arctan x}{x(1+x^2)}dx$
$K\displaystyle =\int_0^{1}\dfrac{\arctan x}{x(1+x^2)}dx+\int_1^{+\infty}\dfrac{\arctan x}{x(1+x^2)}dx$
En la segunda integral, en el miembro derecho realizar el cambio de variable $u=\dfrac{1}{x}$ :
$K= \displaystyle\int_0^1 \dfrac{\arctan x }{x(1+x^2)}dx+ \int_0^1 \dfrac{x\arctan \Big(\dfrac{1}{x}\Big) }{1+x^2}dx$
Para $x>0$ , $\arctan \Big(\dfrac{1}{x}\Big)+\arctan x=\dfrac{\pi}{2}$
Por lo tanto:
$K=\displaystyle\int_0^1 \dfrac{\arctan x }{x(1+x^2)}dx+\dfrac{\pi}{2}\int_0^1\dfrac{x}{1+x^2}dx-\int_0^1\dfrac{x\arctan x}{1+x^2}dx$
Para $x\neq 0$ , $\dfrac{1}{x(1+x^2)}=\dfrac{1}{x}-\dfrac{x}{1+x^2}$
$K=\displaystyle\int_0^1 \dfrac{\arctan x }{x}dx-2\int_0^1 \dfrac{x\arctan x }{1+x^2}dx+\dfrac{\pi}{2}\int_0^1\dfrac{x}{1+x^2}dx$
La derivada de $(\arctan x)^2$ es $\dfrac{2\arctan x}{1+x^2}$
Por lo tanto:
$\displaystyle \int_0^1 \dfrac{2x\arctan x }{1+x^2}dx=\Big[x(\arctan x)^2\Big]_0^1-\int_0^1 (\arctan x)^2dx=\dfrac{\pi^2}{16}-\int_0^1 (\arctan x)^2dx$
Por lo tanto:
$K=\displaystyle\int_0^1 \dfrac{\arctan x }{x}dx-\dfrac{\pi^2}{16}+\int_0^1 (\arctan x)^2dx+\dfrac{\pi}{4}\Big[\log(1+x^2)\Big]_0^1$
Recall $K=\dfrac{\pi}{2}\ln 2$
Por lo tanto:
$\displaystyle\int_0^1 (\arctan x)^2 dx=\dfrac{\pi^2}{16}-G+\dfrac{\pi}{4}\ln 2$
Dónde $G=\displaystyle\int_0^1 \dfrac{\arctan x }{x}dx$ es la constante del catalán.
0 votos
Se podría reducir a $\log$ integrales expandiendo $\arctan(x)$ como $\frac{i}{2}(\log(1+i x)-\log(1-i x))$ . La expresión resultante debería ser (en principio) expresable en $\log$ , $\text{Li}$ y $\zeta$ valores.
2 votos
La integral considerada es igual a $$0.119548664034710922477515058213 .$$