Encontrar $\sqrt{\frac{1}{2}}.\sqrt{\frac{1}{2}+\sqrt\frac{1}{2}}.\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+\sqrt\frac{1}{2}}}....\infty$
Que $x=\sqrt{\frac{1}{2}}.\sqrt{\frac{1}{2}+\sqrt\frac{1}{2}}.\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+\sqrt\frac{1}{2}}}....\infty$
$\log x=\frac{1}{2}\log(\frac{1}{2})+\frac{1}{2}\log(\frac{1}{2}+\sqrt\frac{1}{2})+\frac{1}{2}\log(\frac{1}{2}+\sqrt{\frac{1}{2}+\sqrt\frac{1}{2}})+....$
No sé cómo solucionarlo más.