Para el primero, necesitamos:
$$\int _{-1/2}^{1/2}\!{{\rm e}^{2\,iax}}{da}={\frac {\sin \left( x
\right) }{x}}\etiqueta{1}$$
$$ \frac{1}{\cosh \left( x \right)}=-2\,\sum _{n=1}^{\infty
} \left( -1 \right) ^{n}{{\rm e}^{- \left| x \right| \left( 2\,n-1
\right) }}\etiqueta{2}$$
$$\int _{-\infty }^{\infty }\!{{\rm e}^{2\,iax}}{{\rm e}^{- \left| x
\right| \left( 2\n-1 \right) }}{dx}=- \frac{1}{\left( 2\,ia-2\n+1 \right) }- \frac{1}{\left( -2\,ia-2\n+1 \right)}\etiqueta{3}$$
$$-2\,\sum _{n=1}^{\infty } \left( -1 \right) ^{n} \left(- \frac{1}{\left( 2\,ia-2\n+1 \right) }- \frac{1}{\left( -2\,ia-2\n+1 \right)} \right) ={
\frac {\pi }{\cosh \left( \pi \,un \right) }}\etiqueta{4}$$
obtenemos:
$$
\begin{aligned}
\int _{-\infty }^{\infty }\!{\frac {\sin \left( x \right) }{x\cosh
\left( x \right) }}{dx}&=\int _{-1/2}^{1/2}\!{\frac {\pi }{\cosh
\left( \pi \,a \right) }}{da}\\
&=2\,\arctan \left( {
{\rm e}^{1/2\,\pi }} \right)-2\,\arctan \left( {{\rm e}^{-1/2\,\pi }} \right)\\
&=2\,\arctan \left( \sinh \left( \frac{1}{2}\,\pi \right) \right) \tag{5}
\end{aligned}$$
donde la última parte que sigue de $(2)$ y la serie de Taylor para arctan:
$$\arctan \left( x \right) =\sum _{n=0}^{\infty }{\frac { \left( -1
\right) ^{n}{x}^{2\,n+1}}{2\,n+1}}\etiqueta{6}$$
Para la segunda tenemos:
$$ \frac{1}{\sinh \left( x \right) }=2\,\sum _{n=1}^{\infty }
{{\rm e}^{-x \a la izquierda( 2\n-1 \right) }}\etiqueta{7}$$
$${\frac { \sin^2 \left( x \right)}{x}}=-\frac{1}{2}\,\sum _{
m=1}^{\infty }{\frac { \left( -1 \right) ^{m}{2}^{2\,m}{x}^{2\,m-1}}{
\left( 2\,m \right) !}}\la etiqueta{8}$$
$$\int _{0}^{\infty }\!{x}^{2\,m-1}{{\rm e}^{-x \a la izquierda( 2\n-1 \right) }}
{dx}={\frac { \left( 2\,m-1 \right) !}{ \left( 2\n-1 \right) ^{2\,m}}
}\etiqueta{9}$$
$$\cuna \left( z \right) -\frac{1}{z}=-\frac{2}{\pi}\,\sum _{m=1}^{\infty }\zeta
\left( 2\,m \right) \left( {\frac {z}{\pi }} \right) ^{2\,m-1}\etiqueta{10}$$
De $(6,7,8)$:
$$
\begin{aligned}
\int _{0}^{\infty }\!{\frac { \sin^2 \left( x \right)}{x\sinh \left( x \right) }}{dx}&=-\frac{1}{2}\,\sum _{m=1}^{\infty } \left(
\frac{\left( -4 \right) ^{m}}{m}\sum _{n=1}^{\infty }{\frac {1}{\left( 2\,n-1
\right) ^{2\,m}}} \right)\\
&=\frac{1}{4}\sum _{m=1}^{\infty }\,{\frac
{\zeta \left( 2\,m \right) \left( {4}^{m}-1 \right) \left( -1
\right) ^{m}}{m}}
\tag{11}
\end{aligned}$$
y después de la integración de $(10)$ una vez que sabemos que:
$$\ln \left( {\frac {\sin \left( z \right) }{z}} \right) =-\sum _{m=1}^
{\infty }\frac{\zeta \left( 2\,m \right)}{m} \left( {\frac {z}{\pi }} \right)
^{2\,m}\etiqueta{12}
$$
así que comparando $(11)$ $(12)$ sabemos que:
$$
\begin{aligned}\int _{0}^{\infty }\!{\frac { \sin^2 \left( x \right) }{x\sinh \left( x \right) }}{dx}&=\frac{1}{2}\,\ln\!\left( \frac{1}{2}\,{\frac {\sinh
\left( 2\,\pi \right) }{\sinh \left( \pi \right) }} \right)\\
&=\frac{1}{2}\,\ln \left( \cosh \left( \pi
\right) \right)
\end{aligned}$$