Tengo esta pregunta de un examen de admisión. Dado que $$f(x)=1+\sum_{k=0}^{100}\frac{(-1)^{k+1}}{(k+1)!}x(x-1)(x-2)\cdots (x-k)$$ find $ $ S(f(x))-S(f'(x))$ where $S$ denotes the sum of the real roots for $f(x)$ respectively $f'(x)
Aquí es cómo trató, desde $x=1,2,\ldots,100, 101$ la parte de la suma se desvanece poco a poco y
$$f(1)=1-1=0$ $ $$f(2)=1-2+\frac{1}{2!}2(2-1)=0$ $ $$f(3)=1-3+\frac{1}{2!}3(3-1)-\frac{1}{3!}3(3-2)(3-1)=\binom{3}{0}-\binom{3}{1}+\binom{3}{2}-\binom{3}{3}$$ and we can see a pattern in the above equation so that we can rewrite $f 3 $ as $(1-1) ^3=0\,$ and indeed that $f (101) =(1-1) ^ {101} = 0$
Puesto que el polinomio es también de orden $101$, las raíces son $x=1,2, \ldots, 101$ giving:$$S(f(x))=\sum_{j=1}^{101}j =5151$$ Is this correct? And how can $S(f'(x)) $ be evaluated ? This doesnt seem so obvious.. Also now we can rewrite $% $ $f(x)=-\frac{1}{101!}(x-1)(x-2)\cdots(x-101)$