$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,{\rm Li}_{#1}} \newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ \begin{align}&\color{#66f}{\large% \int_{0}^{\infty}{x\,\dd x \over \pars{x^{2} + 1}\pars{\expo{2\pi x} + 1}}\,\dd x} \\[5mm]&=\int_{0}^{\infty}{x \over \pars{x^{2} + 1}} \pars{{1 \over \expo{2\pi x} + 1} - {1 \over \expo{2\pi x} - 1}}\,\dd x +\int_{0}^{\infty}{x\,\dd x \over \pars{x^{2} + 1}\pars{\expo{2\pi x} - 1}} \\[5mm]&=-2\int_{0}^{\infty} {x\,\dd x \over \pars{x^{2} + 1}\pars{\expo{4\pi x} - 1}} +\int_{0}^{\infty}{x\,\dd x \over \pars{x^{2} + 1}\pars{\expo{2\pi x} - 1}} \\[5mm]&=-2\int_{0}^{\infty} {x\,\dd x \over \pars{x^{2} + 4}\pars{\expo{2\pi x} - 1}} +\int_{0}^{\infty}{x\,\dd x \over \pars{x^{2} + 1}\pars{\expo{2\pi x} - 1}} \end{align}
Con identidad ${\bf 6.3.21}$ : $$ \int_{0}^{\infty}{x\,\dd x \over \pars{x^{2} + z^{2}}\pars{\expo{2\pi x} - 1}} =\half\bracks{\ln\pars{z} - {1 \over 2z} - \Psi\pars{z}} $$ conseguiremos
\begin{align}&\color{#66f}{\large% \int_{0}^{\infty}{x\,\dd x \over \pars{x^{2} + 1}\pars{\expo{2\pi x} + 1}}\,\dd x} \\[5mm]&=-2\braces{% \half\bracks{\ln\pars{z} - {1 \over 2z} - \Psi\pars{z}}_{z\ =\ 2}} +\half\bracks{\ln\pars{z} - {1 \over 2z} - \Psi\pars{z}}_{z\ =\ 1} \\[5mm]&=-\ln\pars{2} + {1 \over 4} +\ \overbrace{\Psi\pars{2}}^{\dsc{\Psi\pars{1} + 1}} -{1 \over 4} - \half\ \overbrace{\Psi\pars{1}}^{\dsc{-\gamma}} =\color{#66f}{\large 1 - {\gamma \over 2} - \ln\pars{2}} \end{align}