$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\pi/2}
\ln\pars{1-\cos^{2}\pars{x}\bracks{\sin^{2}\pars{\alpha} - \sin^{2}\pars{\beta} \sin^{2}\pars{x}}}\,\dd x:\ {\large ?}}$
\begin{align}
&\color{#c00000}{\int_{0}^{\pi/2}
\ln\pars{1-\cos^{2}\pars{x}\bracks{\sin^{2}\pars{\alpha} - \sin^{2}\pars{\beta} \sin^{2}\pars{x}}}\,\dd x}
\\[3mm]&=\half\int_{-\pi/2}^{\pi/2}
\ln\pars{1-\cos^{2}\pars{x}\bracks{\sin^{2}\pars{\alpha} - \sin^{2}\pars{\beta} \sin^{2}\pars{x}}}\,\dd x
\\[3mm]&=\half\int_{-\pi/2}^{\pi/2}
\ln\pars{1-{1 + \cos\pars{2x} \over 2}\bracks{\sin^{2}\pars{\alpha} - \sin^{2}\pars{\beta}\,{1 - \cos\pars{2x} \over 2}}}\,\dd x
\\[3mm]&={1 \over 4}\int_{-\pi}^{\pi}
\ln\pars{1 - \half\,\sin^{2}\pars{\alpha}
+ {1 \over 4}\,\sin^{2}\pars{\beta} -\bracks{\half\,\sin^{2}\pars{\alpha}
+ {1 \over 4}\,\sin^{2}\pars{\beta}}\cos\pars{x}}\,\dd x
\end{align}
Vamos
$$
\verts{\sin\pars{\alpha}} = {\raíz{2}\sin\pars{\theta/2} \más de una}\,,\quad
\verts{\sin\pars{\beta}} = {2\cos\pars{\theta/2} \más de una}\,,\qquad
0 \leq \theta < \pi
$$
tal que
\begin{align}
&-\,\half\,\sin^{2}\pars{\alpha} + {1 \over 4}\,\sin^{2}\pars{\beta}
={\cos\pars{\theta} \over a^{2}}\,,\qquad
\half\,\sin^{2}\pars{\alpha} + {1 \over 4}\,\sin^{2}\pars{\beta}
={1 \over a^{2}}
\\[3mm]&\mbox{and}\quad\theta
=2\arctan\pars{\root{2}\,{\verts{\sin\pars{\alpha}} \over \verts{\sin\pars{\beta}}}}
\,,\qquad \verts{a} = {2 \over \root{2\sin^{2}\pars{\alpha} + \sin^{2}\pars{\beta}}}
\end{align}
Tenga en cuenta que $\ds{\verts{a} \geq {2\root{3} \over 3} \approx 1.1547 > 1}$.
A continuación,
\begin{align}
&\color{#c00000}{\int_{0}^{\pi/2}
\ln\pars{1-\cos^{2}\pars{x}\bracks{\sin^{2}\pars{\alpha} - \sin^{2}\pars{\beta} \sin^{2}\pars{x}}}\,\dd x}
\\[3mm]&={1 \over 4}\int_{-\pi}^{\pi}
\ln\pars{1 + {\cos\pars{\theta} \over a^{2}} - {\cos\pars{x} \over a^{2}}}\,\dd x
\\[3mm]&=\color{#c00000}{-\pi\ln\pars{\verts{a}}+{1 \over 4}\int_{-\pi}^{\pi}
\ln\pars{\mu - \cos\pars{x}}\,\dd x}\,,\qquad \mu \equiv a^{2} + \cos\pars{\theta}
\\[3mm]&\mbox{with}\quad
\mu \geq {2\root{3} \over 3} + \cos\pars{\theta} \geq
{2\root{3} - 3 \over 3} \approx 0.1547
\end{align}
La respuesta es
\begin{align}
&\color{#00f}{\large\int_{0}^{\pi/2}
\ln\pars{1-\cos^{2}\pars{x}\bracks{\sin^{2}\pars{\alpha} - \sin^{2}\pars{\beta} \sin^{2}\pars{x}}}\,\dd x}
\\[3mm]&=\color{#00f}{\large%
-\pi\ln\pars{\verts{a}}
+\half\,\pi\ln\pars{\mu + \root{\mu^{2} - 1} \over 2}}\,,\qquad\mu > 1
\end{align}