Encontrar $\log {24}48$ $\log{12}36=k$
Mi método:
Tenemos $$\frac{\log 36}{\log 12}=k$$ $\implies$
$$\frac{\log 12+\log 3}{\log 12}=k$$ $\implies$
$$\frac{\log3}{2\log 2+\log 3}=k-1$ $ Tan
$$\log 3=(k-1)t \tag{1}$$
$$2\log 2+\log 3=t$$ $\implies$
$$\log 2=\frac{(2-k)t}{2} \tag{2}$$
Ahora $$\log _{24}48=\frac{\log 48}{\log 24}=\frac{4\log 2+\log 3}{3\log 2+\log 3}=\frac{2(2-k)+k-1}{3\left(\frac{2-k}{2}\right)+k-1}=\frac{6-2k}{4-k}$ $
¿hay otro método?