Idea posible. Deje $f=f(x,y)$. Si $f$ $1/f$ son armónicas, a continuación,
$$
\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0
$$
$$
\frac{\partial^2 1/f}{\partial x^2} + \frac{\partial^2 1/f}{\partial y^2} = 0
$$
donde
$$
\frac{\partial 1/f}{\partial x} = -\frac{\partial f}{\partial x} \frac{1}{f^2} \qquad \frac{\partial^2 1/f}{\partial x^2} = -\frac{\partial^2 f}{\partial x^2} \frac{1}{f^2} +2\left(\frac{\partial f}{\partial x}\right)^2\frac{1}{f^3}
$$
$$
\frac{\partial 1/f}{\partial y} = -\frac{\partial f}{\partial y} \frac{1}{f^2} \qquad \frac{\partial^2 1/f}{\partial y^2} = -\frac{\partial^2 f}{\partial y^2} \frac{1}{f^2} +2\left(\frac{\partial f}{\partial y}\right)^2\frac{1}{f^3}
$$
Así
$$
-\frac{\partial^2 f}{\partial x^2} \frac{1}{f^2} +2\left(\frac{\partial f}{\partial x}\right)^2\frac{1}{f^3}-\frac{\partial^2 f}{\partial y^2} \frac{1}{f^2} +2\left(\frac{\partial f}{\partial y}\right)^2\frac{1}{f^3} = \frac{2}{f^3}\left(\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f} {\partial y}\right)^2\right)
$$
$$
\frac{2}{f^3}\left(\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f} {\partial y}\right)^2\right)=0
$$
Desde $f \not \equiv 0$, tenemos
$$
0=\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f} {\partial y}\right)^2 =\left(\frac{\partial f}{\partial x}+\frac{\partial f} {\partial y}i\right)\left(\frac{\partial f}{\partial x}-\frac{\partial f} {\partial y}i\right)
$$