Nota: $$ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end {pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end {pmatrix} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end {pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end {pmatrix} \ Rightarrow \\ \begin{cases}\require{cancel}\cancel{a_{11}b_{11}}+a_{12}b_{21}=\cancel{b_{11}a_{11}}+b_{12}a_{21}\\
a_{11}b_{12}+a_{12}b_{22}=b_{11}a_{12}+b_{12}a_{22}\\
a_{21}b_{11}+a_{22}b_{21}=b_{21}a_{11}+b_{22}a_{21}\\
a_{21}b_{12}+\cancel{a_{22}b_{22}}=b_{21}a_{12}+\cancel{b_{22}a_{22}}\end {cases} $ $ From$(1)$, ya que$b_{12}$ y$b_{21}$ pueden ser cualquier número, en particular,$b_{12}=0$ y$b_{21}\ne 0$, obtenemos:$a_{12}=0$.
Del mismo modo, para$b_{12}\ne 0$ y$b_{21}=0$, obtenemos$a_{21}=0$.
Desde$(2)$, ya que$a_{12}=0$ y$b_{12}$ es un número arbitrario, obtenemos$a_{11}b_{12}=b_{12}a_{22} \Rightarrow a_{11}=a_{22}$.