Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

9 votos

Prueba existe de que f(0) y f(0)=b/(a1)

<blockquote> <p><strong>Problema</strong>:<br>Si f(x) es continua en x=0 y lim, a, b son constantes y |a|>1, prueba existe de que f'(0) y f'(0)=\dfrac{b}{a-1}.</p> </blockquote> <p>Este enfoque está definitivamente mal:</p> <p>\begin{align} b&=\lim_{x\to 0} \frac{f(ax)-f(x)}{x}\\ &=\lim_{x\to 0} \frac{f(ax)-f(0)-(f(x)-f(0))}{x}\\ &=af'(0)-f'(0)\\ &=(a-1)f'(0) \end {Alinee el}</p> <p>Le mostraré un caso por qué este enfoque es incorrecto:</p> <blockquote> <p>f(x) = \begin{cases} 1,&x\neq0\\ 0,&x=0 \end{casos} \lim_{x\to0}\dfrac{f(3x)-f(x)}{x}=\lim_{x\to0} \dfrac{1-1}{x}=0<br>\lim_{x\to0}\dfrac{f(3x)}{x}=\infty, \lim_{x\to0}\dfrac{f(x)}{x}=\infty</p> </blockquote> <p>¿Alguien sabe cómo demostrarlo? ¡Gracias de antemano!</p>

10voto

Paramanand Singh Puntos 13338

Esta es una pregunta difícil y la solución es algo no evidente. Sabemos que \lim_{x \to 0}\frac{f(ax) - f(x)}{x} = b and hence f(ax) - f(x) = bx + xg(x) where g(x) \a 0 as x \to 0. Replacing x by x/a we get f(x) - f(x/a) = bx/a + (x/a)g(x/a) Replacing x by x/a^{k - 1} we get f(x/a^{k - 1}) - f(x/a^{k}) = bx/a^{k} + (x/a^{k})g(x/a^{k}) Adding such equations for k = 1, 2, \ldots, n we get f(x) - f(x/a^{n}) = bx\sum_{k = 1}^{n}\frac{1}{a^{k}} + x\sum_{k = 1}^{n}\frac{g(x/a^{k})}{a^{k}} Letting n \to \infty and using sum of infinite GP (remember it converges because |a| > 1) and noting that f is continuous at x = 0, we get f(x) - f(0) = \frac{bx}{a - 1} + x\sum_{k = 1}^{\infty}\frac{g(x/a^{k})}{a^{k}} Dividing by x and letting x \a 0 we get f'(0) = \lim_{x \to 0}\frac{f(x) - f(0)}{x} = \frac{b}{a - 1} + \lim_{x \to 0}\sum_{k = 1}^{\infty}\frac{g(x/a^{k})}{a^{k}}

La suma \sum_{k = 1}^{\infty}\frac{g(x/a^{k})}{a^{k}} tends to 0 as x \to 0 because g(x) \a 0. The proof is not difficult but perhaps not too obvious. Here is one way to do it. Since g(x)\a 0 as x \to 0, it follows that for any \epsilon > 0 there is a \delta > 0 such that |g(x)| < \epsilon for all x with 0 <|x| < \delta. Since |a| > 1 it follows that |x/^{k}| < \delta if |x| < \delta and therefore |g(x/a^{k})| < \epsilon. Thus if 0 < |x| < \delta we have \left|\sum_{k = 1}^{\infty}\frac{g(x/a^{k})}{a^{k}}\right| < \sum_{k = 1}^{\infty}\frac{\epsilon}{|a|^{k}} = \frac{\epsilon}{|a| - 1} and thus the sum tends to 0 as x \to 0.

Por lo tanto f'(0) = b/(a - 1).


Por CIERTO, el resultado de la pregunta se mantiene incluso si 0 < |a| < 1. Deje c = 1/a, de modo que |c| > 1. Ahora tenemos \lim_{x \to 0}\frac{f(ax) - f(x)}{x} = b implies that \lim_{t \to 0}\frac{f(ct) - f(t)}{t} = -bc (just put ax = t). Hence by what we have proved above it follows that f'(0) = \frac{-bc}{c - 1} = \frac{b}{a - 1} Note that if a = 1 then b = 0 trivially and we can't say anything about f'(0). And if a = -1 then f(x) = |x| provides a counter-example. If = 0 then the result holds trivially by definition of derivative. Hence the result in question holds if and only if || a \neq 1.

-2voto

MPW Puntos 14815

Sugerencia: Estás muy cerca.

Escribir la expresión como a\frac{f(ax)-f(0)}{ax}-\frac{f(x)-f(0)}{x} Note that x\to 0 if and only if ax\to 0 (since a\neq 0).

¿Se deduce de esto?

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X