Mi intento:
$\eqalign{ & \log_{10}x = {{\ln x} \over {\ln 10}} \cr & u = \ln x \cr & v = \ln 10 \cr & {{du} \over {dx}} = {1 \over x} \cr & {{dv} \over {dx}} = 0 \cr y {v^2} = {(\ln10)^2} \cr & {{dy} \over {dx}} = {{\left( {{{\ln 10} \over x}} \right)} \over {2\ln 10}} = {{\ln10} \over x} \times {1 \over {2\ln 10}} = {1 \over {2x}} \cr} $
La respuesta correcta es: ${{dy} \over {dx}} = {1 \over {x\ln 10}}$ , ¿de dónde me salen mal?
Gracias!