Respuesta
¿Demasiados anuncios?Así, se utilizan algunas propiedades:
- La transformada de Laplace de una función de $\text{y}\left(t\right)$, se ve así: $$\text{Y}\left(\text{s}\right)=\mathcal{L}_t\left[\text{y}\left(t\right)\right]_{\left(\text{s}\right)}:=\int_0^\infty\text{y}\left(t\right)e^{-\text{s}t}\space\text{d}t\tag1$$
- El concolution teorema: $$\mathcal{L}_t\left[\text{f}\left(t\right)*\text{g}\left(t\right)\right]_{\left(\text{s}\right)}=\mathcal{L}_t\left[\text{f}\left(t\right)\right]_{\left(\text{s}\right)}\cdot\mathcal{L}_t\left[\text{g}\left(t\right)\right]_{\left(\text{s}\right)}:=$$ $$\left\{\int_0^\infty\text{f}\left(t\right)e^{-\text{s}t}\space\text{d}t\right\}\cdot\left\{\int_0^\infty\text{g}\left(t\right)e^{-\text{s}t}\space\text{d}t\right\}=\text{F}\left(\text{s}\right)\cdot\text{G}\left(\text{s}\right)\tag2$$
- La transformada de Laplace de $\sin\left(t\right)$, se ve así: $$\mathcal{L}_t\left[\sin\left(t\right)\right]_{\left(\text{s}\right)}:=\int_0^\infty\sin\left(t\right)e^{-\text{s}t}\space\text{d}t=\frac{1}{1+\text{s}^2}\tag3$$ Al $\Re\left(\text{s}\right)>0$.
- La transformada de Laplace de $t^2$, se ve así: $$\mathcal{L}_t\left[t^2\right]_{\left(\text{s}\right)}:=\int_0^\infty t^2e^{-\text{s}t}\space\text{d}t=\frac{2}{\text{s}^3}\tag4$$ Al $\Re\left(\text{s}\right)>0$.
Así, cuando tenemos el problema de la LHS:
$$\mathcal{L}_t\left[\text{y}\left(t\right)*\sin\left(t\right)\right]_{\left(\text{s}\right)}=\mathcal{L}_t\left[\text{y}\left(t\right)\right]_{\left(\text{s}\right)}\cdot\mathcal{L}_t\left[\sin\left(t\right)\right]_{\left(\text{s}\right)}=\text{Y}\left(\text{s}\right)\cdot\frac{1}{1+\text{s}^2}\tag5$$
Y por el lado derecho:
$$\mathcal{L}_t\left[t^2\right]_{\left(\text{s}\right)}=\frac{2}{\text{s}^3}\tag6$$
Por lo tanto, establece el LHS y RHS igualdad y resolver para $\text{Y}\left(\text{s}\right)$:
$$\text{Y}\left(\text{s}\right)\cdot\frac{1}{1+\text{s}^2}=\frac{2}{\text{s}^3}\space\Longleftrightarrow\space\text{Y}\left(\text{s}\right)=\frac{\frac{2}{\text{s}^3}}{\frac{1}{1+\text{s}^2}}=\frac{2\cdot\left(1+\text{s}^2\right)}{\text{s}^3}=2\cdot\left\{\frac{1}{\text{s}^3}+\frac{1}{\text{s}}\right\}\tag7$$
Ahora, usando la transformada inversa de Laplace, se obtiene:
$$\text{y}\left(t\right)=\mathcal{L}_\text{s}^{-1}\left[\text{Y}\left(\text{s}\right)\right]_{\left(t\right)}=2\cdot\left\{\mathcal{L}_\text{s}^{-1}\left[\frac{1}{\text{s}^3}\right]_{\left(t\right)}+\mathcal{L}_\text{s}^{-1}\left[\frac{1}{\text{s}}\right]_{\left(t\right)}\right\}=2\cdot\left(\frac{t^2}{2}+1\right)=2+t^2\tag8$$