$\newcommand{\+}{^{\daga}}%
\newcommand{\ángulos}[1]{\left\langle #1 \right\rangle}%
\newcommand{\llaves}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \cima {= \cima \vphantom{\enorme}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\mitad}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}%
\newcommand{\cy}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}
&\color{#ff0000}{\int_{0}^{1}\fermi\pars{x}\,\dd x\int_{0}^{1}{1 \over \fermi\pars{x'}}\,\dd x'}
=
\half
\int_{0}^{1}\int_{0}^{1}\bracks{%
{\fermi\pars{x} \over \fermi\pars{x'}} + {\fermi\pars{x'} \over \fermi\pars{x}}}
\,\dd x\,\dd x'
\\[3mm]&=
\half
\int_{0}^{1}\int_{0}^{1}\braces{\vphantom{\Huge A^{A}}\,\bracks{\vphantom{\LARGE A^{A^{A}}}%
\root{\fermi\pars{x} \over \fermi\pars{x'}}
- \root{\fermi\pars{x'} \over \fermi\pars{x}}}^{\,2} + 2\root{\fermi\pars{x} \over \fermi\pars{x'}}\root{\fermi\pars{x'} \over \fermi\pars{x}}\,}
\,\dd x\,\dd x'
\\[3mm]&\color{#ff0000}{\geq \int_{0}^{1}\int_{0}^{1}\dd x\,\dd y = 1}
\end{align}
$$
\color{#0000ff}{\int_{0}^{1}\fermi\pars{x}\,\dd x\int_{0}^{1}{1 \ \fermi\pars{x'}}\,\dd x'}
\geq \color{#0000ff}{1}
$$