$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,\mathrm{Li}_{#1}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\color{#f00}{% \int_{0}^{1}\int_{0}^{1}{x\ln\pars{x} \over \pars{1 - xy}\ln\pars{xy}} \,\dd x\,\dd y} = \int_{0}^{1}\int_{0}^{y}{\pars{x/y}\ln\pars{x/y} \over \pars{1 - x}\ln\pars{x}}\,{\dd x \over y}\,\dd y \\[3mm] = &\ \int_{0}^{1}{1 \over \pars{1 - x}\ln\pars{x}} \int_{x}^{1}\bracks{x\ln\pars{x}\,{1 \over y^{2}} - x\,{\ln\pars{y} \over y^{2}}}\,\dd y\,\dd x \\[3mm] = &\ \int_{0}^{1}{1 \over \pars{1 - x}\ln\pars{x}}\braces{% x\ln\pars{x}\pars{-1 + {1 \over x}} - x\bracks{1 - x + \ln\pars{x} \over x}}\,\dd x \\[3mm] = &\ \int_{0}^{1}\bracks{1 - {1 - x + \ln\pars{x} \over \pars{1 - x}\ln\pars{x}}} \,\dd x = 1\ -\ \underbrace{\int_{0}^{1}{1 - x + \ln\pars{x} \over \pars{1 - x}\ln\pars{x}}} _{\ds{\color{#f00}{\large ?} = \color{#f00}{\large\gamma}}} \,\dd x = \color{#f00}{1 - \gamma} \end{align}
\begin{align} \color{#f00}{\large ?} & = \int_{0}^{1}{1 - x + \ln\pars{x} \over \pars{1 - x}\ln\pars{x}}\,\dd x = -\int_{0}^{1}{\pars{x - 1}/\ln\pars{x} - 1 \over 1 - x}\,\dd x = -\int_{0}^{1}{1 \over 1 - x}\int_{0}^{1}\pars{x^{t} - 1}\,\dd t\,\dd x \\[3mm] & = \int_{0}^{1}\int_{0}^{1}{1 - x^{t} \over 1 - x}\,\dd x\,\dd t = \int_{0}^{1}\bracks{\Psi\pars{t + 1} + \gamma}\,\dd t = \ln\pars{\Gamma\pars{2}} - \ln\pars{\Gamma\pars{1}} + \gamma = \color{#f00}{\gamma} \end{align}
Note that $$ \int_{0}^{1}\pars{x^{t} - 1}\,\dd t = {1 \over \ln\pars{x}}\int_{0}^{1}x^{t}\ln\pars{x}\,\dd t - 1 = {1 \over \ln\pars{x}}\int_{0}^{1}\partiald{x^{t}}{t}\,\dd t - 1 = {x - 1 \over \ln\pars{x}} - 1 $$
0 votos
$f(n,y)=\int_{0}^{y}\frac{u^n}{\ln u}du\,$ ?
0 votos
@BehrouzMaleki ¡Exactamente! ¡Ahí es donde también me perdió!
0 votos
Ver también mathworld.wolfram.com/Euler-MascheroniConstant.html#eqn9
0 votos
También te puede interesar saber que $\displaystyle\int\limits_0^1\!\!\int\limits_0^1\!\!\int\limits_0^1\frac{x\ln x}{(1-xyz)\ln(xyz)}dx\,dy\,dz=2\gamma-1$.