Para $r \geqslant 0$ , dejemos que $k_r = 2^{2^r}$ . Sea
$$\begin{align} a_n &= k_{2r+2} - \frac{1}{n},\text{ for } k_{2r} \leqslant n < k_{2r+2};\\ b_n &= k_{2r+1} - \frac{1}{n},\text{ for } k_{2r-1} \leqslant n < k_{2r+1}; \end{align}$$
para $n \geqslant 4$ y elija $a_n, b_n$ de forma bastante arbitraria para $n < 4$ .
Entonces
$$\sum_{n=k_{2r}}^{k_{2r+2}-1} \frac{1}{a_n} > \frac{k_{2r+2}-k_{2r}}{k_{2r+2}} > \frac{1}{2},$$
así que $\sum \frac{1}{a_n}$ diverge. Análogamente, $\sum \frac{1}{b_n}$ diverge.
Pero, tenemos $a_n > b_n$ para $k_{2r} \leqslant n < k_{2r+1}$ y $b_n > a_n$ para $k_{2r+1} \leqslant n < k_{2r+2}$ Así que
$$\sum_{n=k_{2r}}^{k_{2r+2}-1} \frac{1}{a_n + b_n} < \frac{k_{2r+1}-k_{2r}}{k_{2r+2}} + \frac{k_{2r+2}-k_{2r+1}}{k_{2r+3}} < \frac{k_{2r+1}}{k_{2r+2}} + \frac{k_{2r+2}}{k_{2r+3}},$$
y
$$\frac{k_r}{k_{r+1}} = 2^{2^r-2^{r+1}} = 2^{-2^r} = \frac{1}{k_r},$$
así que
$$\sum_{r=1}^\infty \frac{1}{k_r} < \infty$$
y
$$\sum_{n=1}^\infty \frac{1}{a_n+b_n}$$
converge.