$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
Con $\ds{\root{x^{2} + x + 1} = x + t}$ vamos a llegar
$\ds{x = {1 - t^{2} \over 2t - 1}}$ tal que
\begin{align}
&\color{#c00000}{\int\pars{4x + 2}\root{x^{2} + x + 1}\,\dd x}
=\int{32 t^{3} + 12t^{2} - 4 \over \pars{2t - 1}^{4}}\,\dd t
\end{align}
Ahora configuraremos $\ds{t \equiv {1 - a \over 2}}$. Entonces
\begin{align}
&\color{#c00000}{\int\pars{4x + 2}\root{x^{2} + x + 1}\,\dd x}
=\int\pars{{27 \over 16 a^{4}} - {a^{2} \over 16} + {9 \over 16a^{2}}
-{3 \over 16}}\,\dd a
\\[5mm]&=-\frac{a^3}{48}-\frac{9}{16 a^3}-\frac{3 a}{16}-\frac{9}{16 a}
\\[5mm]&=-\frac{1}{48} (1-2 t)^3-\frac{3}{16} (1-2 t)-\frac{9}{16 (1-2 t)}
-\frac{9}{16 (1-2 t)^3}
\\[5mm]&=-\frac{1}{48} \left[1-2 \left(\sqrt{x^2+x+1}-x\right)\right]^3-\frac{3}{16} \left[1-2 \left(\sqrt{x^2+x+1}-x\right)\right]-\frac{9}{16 \left[1-2 \left(\sqrt{x^2+x+1}-x\right)\right]}-\frac{9}{16 \left[1-2 \left(\sqrt{x^2+x+1}-x\right)\right]^3}\\[5mm]& + \mbox{a constant}
\end{align}