4 votos

Pregunta de probabilidad de dados rodando

Lanzando un dado razonable$7$ veces, ¿cuál es la probabilidad de que la suma total sea divisible por$3$ y no se haya lanzado ningún valor impar?

Sé que hay$3^6$ de formas posibles para que el primer dado$6$ otorgue solo valores pares, pero ¿cuántos de ellos son divisibles por$3$?

2voto

Ya Basha Puntos 130

Si nos olvidamos de esta cosa "no-extraña" por un segundo, y solo nos enfocamos en "divisible por$3$", imagine haber tirado el dado seis veces, y solo esperando que el séptimo lanzamiento decida todo. ¿Cuántos resultados diferentes en el séptimo troquel harán que el resultado total sea divisible por$3$? ¿Importa cuál es la suma del primer$6$?

Ahora adapta esto al caso en el que solo estás lanzando evens. ¿Eso realmente cambia algo del argumento anterior?

1voto

Mouffette Puntos 205

Como usted ha señalado, la probabilidad de que los primeros seis dados de ser todos, incluso es $\frac{3^6}{6^6}=\frac{1}{2^6}$.

La suma de los primeros seis dados será algún número. No importa lo que este número es, la probabilidad de que el séptimo rollo es tanto aún y hace que la suma total divisible por $3$$1/6$.

Para ver esto de forma explícita, se puede hacer en algunos casos. Voy a hacer un caso para usted. Supongamos que la suma de los primeros seis dados es uno más de los múltiples de $3$. El séptimo rollo debe ser un $2$ para hacer el total de la suma de un múltiplo de $3$. El séptimo rollo podía ser $5$ así, pero sólo desea que incluso en rollos.

Resulta que no importa lo que la suma de los primeros seis rollos es, no es exactamente una "buena" séptimo rollo que le dará lo que usted desea.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X