Si expande el integrando para valores grandes de $n$, obtendrá $$ \dfrac{n\sin \left(\frac {x}{n}\right)} {\left (1 + \frac {x} {n} \right) ^ {n}} = e ^ {-x} x + \frac {e ^ {-x} x ^ 3} {2 n} + \frac {e ^ {-x} x ^ 3 \left (3 x ^ 2-8 x-4\right)} {24 n ^ 2} + \frac {e ^ {-x} x ^ 5 \ izquierda (x ^ 2-8 x +8\right)} {48 n^3}+\cdots$$ and you are just left with $$\int_0^{\infty}x^k e^{-x}dx=\Gamma (k+1)$$ So, $p$ being the number of terms used in the development, the value of the integral $I_p$ is $$I_0=1$$ $$I_1=\frac{n+3}{n}$$ $$I_2=\frac{n^2+3 n+6}{n^2}$$ $$I_3=\frac{n^3+3 n^2+6 n+5}{n^3}$$ $$I_4=\frac{n^4+3 n^3+6 n^2+5 n-33}{n^4}$$ $$I_5=\frac{n^5+3 n^4+6 n^3+5 n^2-33 n-266}{n^5}$$ $$I_6=\frac{n^6+3 n^5+6 n^4+5 n^3-33 n^2-266 n-1309}{n^6}$$