Sustituyendo $a_i=\sqrt{2}^{i-1}$ da
\begin{align}
1+\frac{1-\frac{1}{\sqrt{2}^n}}{1-\frac{1}{\sqrt{2}}}=1+\sum_{i=1}^{n}{(\frac{1}{\sqrt{2}})^{i-1}}=1+\sum_{i=1}^{n}{\frac{1}{a_i}} & \geq k\left(\sum_{i=1}^{n}{\frac{1}{\sqrt{1+\sum_{j=1}^{i}{a_j^2}}}}\right)\\
& =k\left(\sum_{i=1}^{n}{\frac{1}{\sqrt{1+\sum_{j=1}^{i}{2^{j-1}}}}}\right) \\
& =k\left(\sum_{i=1}^{n}{\frac{1}{\sqrt{2^i}}}\right) \\
& =k\frac{1}{\sqrt{2}}\frac{1-\frac{1}{\sqrt{2}^n}}{1-\frac{1}{\sqrt{2}}}
\end{align}
Así
\begin{align}
k \leq \frac{1+\frac{1-\frac{1}{\sqrt{2}^n}}{1-\frac{1}{\sqrt{2}}}}{\frac{1}{\sqrt{2}}\frac{1-\frac{1}{\sqrt{2}^n}}{1-\frac{1}{\sqrt{2}}}}=\sqrt{2}+\frac{1}{\frac{1}{\sqrt{2}}\frac{1-\frac{1}{\sqrt{2}^n}}{1-\frac{1}{\sqrt{2}}}}=\sqrt{2}+\frac{\sqrt{2}-1}{1-\frac{1}{\sqrt{2}^n}}
\end{align}
Ya que esta debe mantener para todos los $n$,$k \leq 2\sqrt{2}-1$. Vamos a demostrar que $k=2\sqrt{2}-1$ obras, de modo que $2 \sqrt{2}-1$ es el valor máximo de $k$. En otras palabras, vamos a mostrar que
$$1+\sum_{i=1}^{n}{\frac{1}{a_i}} \geq (2\sqrt{2}-1)\left(\sum_{i=1}^{n}{\frac{1}{\sqrt{1+\sum_{j=1}^{i}{a_j^2}}}}\right)$$
Por Cauchy Schwarz desigualdad tenemos
$$\sqrt{2}^i\sqrt{1+\sum_{j=1}^{i}{a_j^2}}=\sqrt{1+\sum_{j=1}^{i}{a_j^2}}\sqrt{1+\sum_{j=1}^{i}{2^{j-1}}} \geq 1+\sum_{j=1}^{i}{\sqrt{2}^{j-1}a_j}$$
Por ponderados AM-HM inequidad que tenemos
$$\frac{1+\sum_{j=1}^{i}{\sqrt{2}^{j-1}a_j}}{2^i}=\frac{1+\sum_{j=1}^{i}{2^{j-1}\frac{a_j}{\sqrt{2}^{j-1}}}}{1+\sum_{j=1}^{i}{2^{j-1}}} \geq \frac{1+\sum_{j=1}^{i}{2^{j-1}}}{1+\sum_{j=1}^{i}{2^{j-1}\frac{\sqrt{2}^{j-1}}{a_j}}}=\frac{2^i}{1+\sum_{j=1}^{i}{\frac{(2\sqrt{2})^{j-1}}{a_j}}}$$
Así
\begin{align}
\sum_{i=1}^{n}{\frac{1}{\sqrt{1+\sum_{j=1}^{i}{a_j^2}}}} \leq \sum_{i=1}^{n}{\frac{\sqrt{2}^i}{1+\sum_{j=1}^{i}{\sqrt{2}^{j-1}a_j}}} & \leq \sum_{i=1}^{n}{\frac{1+\sum_{j=1}^{i}{\frac{(2\sqrt{2})^{j-1}}{a_j}}}{(2\sqrt{2})^i}} \\
&=\sum_{i=1}^{n}{\frac{1}{(2\sqrt{2})^i}}+\sum_{j=1}^{n}{\frac{(2\sqrt{2})^{j-1}}{a_j}\sum_{i=j}^{n}{\frac{1}{(2\sqrt{2})^i}}} \\
&=\sum_{i=1}^{n}{\frac{1}{(2\sqrt{2})^i}}+\sum_{j=1}^{n}{\frac{1}{a_j}\sum_{i=1}^{n-j+1}{\frac{1}{(2\sqrt{2})^i}}} \\
& \leq \sum_{i=1}^{\infty}{\frac{1}{(2\sqrt{2})^i}}+\sum_{j=1}^{n}{\frac{1}{a_j}\sum_{i=1}^{\infty}{\frac{1}{(2\sqrt{2})^i}}} \\
&=\frac{1}{2\sqrt{2}-1}(1+\sum_{i=1}^{n}{\frac{1}{a_i}})
\end{align}