Integrando por partes obtenemos
$$
\mathcal{I}_n = \int_{-\infty}^\infty \frac{\operatorname{Ai}^2(x+a_n)}{x^2}dx =2\cdot \int_{-\infty}^\infty \frac{\operatorname{Ai}(x+a_n)\operatorname{Ai}^\prime(x+a_n)}{x}dx\qquad (1)
$$
[debido a la asymptotics
$$\operatorname{Ai}(x)\sim \frac{e^{-\frac{2}{3}x^{3/2}}}{2\sqrt{\pi}x^{1/4}},\qquad
\operatorname{Ai} (x)\sim \frac{\sin\left(\frac{2}{3}x^{3/2}+\frac{\pi}{4}\right)}{\sqrt{\pi}x^{1/4}},\qquad x\+\infty
$$
el límite de los términos en $(1)$ a desaparecer y la integral en el lado derecho es convergente.]
Ahora, considere el más general integral vistos como valor principal de Cauchy:
$$
I(a)=\int_{-\infty}^\infty \frac{\operatorname{Ai}(x+a)\operatorname{Ai}^\prime(x+a)}{x}dx.
$$
Vamos a necesitar dos integrales de representaciones(ver el libro de la Vallee, Soares "funciones de Airy y aplicaciones a la física"):
$$
\operatorname{Ai}^2(x)=\frac{1}{2\pi^{3/2}}\int_0^\infty \cos\left(\frac{t^3}{12}+tx+\frac{\pi}{4}\right)\frac{dt}{\sqrt{t}},\ \ \qquad (2)
$$
$$
\operatorname{Ai}(x)\operatorname{Bi}(x)=\frac{1}{2\pi^{3/2}}\int_0^\infty \sin\left(\frac{t^3}{12}+tx+\frac{\pi}{4}\right)\frac{dt}{\sqrt{t}}.\qquad(3)
$$
En representación de la derivada $\operatorname{Ai}(x+a)\operatorname{Ai}^\prime(x+a)$ $(2)$ da
$$
I(a)=\frac{-1}{4\pi^{3/2}}\int_{-\infty}^\infty\frac{dx}{x}\int_0^\infty \sin\left(\frac{t^3}{12}+tx+ta+\frac{\pi}{4}\right)\sqrt{t}\ {dt}=\\
\frac{-1}{4\pi^{3/2}}\int_0^\infty \sqrt{t}\ {dt}\int_{-\infty}^\infty\frac{dx}{x}\left[\sin\left(\frac{t^3}{12}+ta+\frac{\pi}{4}\right)\cos tx+\cos\left(\frac{t^3}{12}+ta+\frac{\pi}{4}\right)\pecado tx\right]=\\
\frac{-1}{4\pi^{3/2}}\int_0^\infty \sqrt{t}\left[\sin\left(\frac{t^3}{12}+ta+\frac{\pi}{4}\right)\cdot 0+\cos\left(\frac{t^3}{12}+ta+\frac{\pi}{4}\right)\cdot \pi\right]dt=\\
\frac{-1}{4\pi^{1/2}}\frac{d}{da}\int_0^\infty \sin\left(\frac{t^3}{12}+ta+\frac{\pi}{4}\right)\frac{dt}{\sqrt{t}}=\\
-\frac{\pi}{2}\frac{d}{da}\operatorname{Ai}(a)\operatorname{Bi}(a)=-\frac{\pi}{2}\left[\operatorname{Ai}'(a)\operatorname{Bi}(a)+\operatorname{Ai}(a)\operatorname{Bi}'(a)\right].
$$
[en la tercera línea de la siguiente Cauchy valores principales se han utilizado $\int_{-\infty}^\infty \frac{\cos xt}{x} dx=0$$\int_{-\infty}^\infty\frac{\sin xt}{x} dx=\pi\cdot \text{sgn}(t)$].
Finalmente, utilizando el valor de la Wronskian $ W \left\{ \operatorname{Ai}(a),\operatorname{Bi}(a) \right\}=\frac{1}{\pi} $ y la sustitución de $a=a_n$
$$
I(a_n)=-\frac{\pi}{2}\left(2\cdot \operatorname{Ai}(a)\operatorname{Bi}'(a)-\frac{1}{\pi}\right)_{a=a_n}=\frac{1}{2},
$$
por lo tanto $\mathcal{I}_n=2I(a_n)=1$.